Embedded fracture model in numerical simulation of the fluid flow and geo-mechanics using Generalized Multiscale Finite Element Method

In this work, we consider a pororelasticity problem in fractured porous media. Mathematical model contains a coupled system of equations for pressure and displacements, for which we use an embedded fracture model. The fine grid approximation is constructed based on the finite volume approximation fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 1392; číslo 1; s. 12075 - 12080
Hlavní autoři: Tyrylgin, Aleksei, Vasilyeva, Maria, Chung, Eric T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.11.2019
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work, we consider a pororelasticity problem in fractured porous media. Mathematical model contains a coupled system of equations for pressure and displacements, for which we use an embedded fracture model. The fine grid approximation is constructed based on the finite volume approximation for the pressure in fractured media and finite element method for the displacements. Multiscale approximation is developed using a structured coarse grid and is based on the Generalized Multiscale Finite Element Method for pressures and displacements. The performance of the method is tested using a two-dimensional model problem with different number of the multiscale basis functions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1392/1/012075