Research on Robust CS-DOA Estimation Method Based on Signal Sparsity Reconstruction

The application of compressed sensing theory in DOA estimation of underwater signals has always been difficult. Aiming at the slow operation speed of the current L1-SVD algorithm and the poor robustness under various conditions such as multi-array elements, this paper proposes an improved CS-DOA est...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 2458; číslo 1; s. 12015 - 12021
Hlavní autoři: Su, Peilin, Huang, Di, Zhu, Jieqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.03.2023
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The application of compressed sensing theory in DOA estimation of underwater signals has always been difficult. Aiming at the slow operation speed of the current L1-SVD algorithm and the poor robustness under various conditions such as multi-array elements, this paper proposes an improved CS-DOA estimation algorithm combined with the greedy algorithm. The algorithm sparsely reconstructs the received signal itself, which effectively improves the strict sparsity of the processed signal. The feasibility of the new algorithm is proved through theoretical analysis and simulation experiments. Compared with the L1-SVD algorithm, the measurement performance under different conditions is significantly improved. It has development prospects in academic research and engineering applications.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2458/1/012015