Parameters extraction of PEMFC's model using manta rays foraging optimizer
Summary In this article, a recently developed bio‐inspired based manta rays foraging optimizer (MRFO) is attempted for reliable and accurate extraction of the model uncertain parameters of proton exchange membrane fuel cells (PEMFCs). The parameter estimation is formulated as a non‐linear optimizati...
Uložené v:
| Vydané v: | International journal of energy research Ročník 44; číslo 6; s. 4629 - 4640 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Chichester, UK
John Wiley & Sons, Inc
01.05.2020
|
| Predmet: | |
| ISSN: | 0363-907X, 1099-114X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Summary
In this article, a recently developed bio‐inspired based manta rays foraging optimizer (MRFO) is attempted for reliable and accurate extraction of the model uncertain parameters of proton exchange membrane fuel cells (PEMFCs). The parameter estimation is formulated as a non‐linear optimization problem subject to set of restrictions. The great development and tremendous revolution of computation heuristic‐based algorithms are the impetus of the authors to apply the MRFO to solve this constrained optimization problem resulting in a precise PEMFC model. Three case studies of typical field PEMFC stacks namely Ballard type Mark V, NedStack type PS6, and Horizon type H‐12. Various I to V datasets are demonstrated to appraise the performance of MRFO among other recent optimizers available in the literature. To be objective and for sake of quantifications, the best scores of minimum fitness values are 0.8533, 2.1360, and 0.0966 for the later said PEMFC stacks, correspondingly. At a later stage, production of various characteristics under varying operating conditions such as changeable cell temperature and regulating pressures are established using the generated best values of PEMFCs model. Further calculations of statistical indices are performed to validate the robustness of obtained results by the MRFO. Through comprehensive performance assessments, it can be confirmed that MRFO is very promising tool for the effective extraction of PEMFCs' model and suggested to be applied for solving other engineering problems.
• Manta rays foraging optimizer (MRFO) is applied to generate best values of PEMFC's parameters.• Three commercial PEMFC stacks are investigated with exhaustive simulations.• The parameters of MRFO‐PEMFC stack models are attested using the empirical dataset points.• Necessary performance assessments are made which signify the cropped MRFO's results. |
|---|---|
| AbstractList | Summary
In this article, a recently developed bio‐inspired based manta rays foraging optimizer (MRFO) is attempted for reliable and accurate extraction of the model uncertain parameters of proton exchange membrane fuel cells (PEMFCs). The parameter estimation is formulated as a non‐linear optimization problem subject to set of restrictions. The great development and tremendous revolution of computation heuristic‐based algorithms are the impetus of the authors to apply the MRFO to solve this constrained optimization problem resulting in a precise PEMFC model. Three case studies of typical field PEMFC stacks namely Ballard type Mark V, NedStack type PS6, and Horizon type H‐12. Various I to V datasets are demonstrated to appraise the performance of MRFO among other recent optimizers available in the literature. To be objective and for sake of quantifications, the best scores of minimum fitness values are 0.8533, 2.1360, and 0.0966 for the later said PEMFC stacks, correspondingly. At a later stage, production of various characteristics under varying operating conditions such as changeable cell temperature and regulating pressures are established using the generated best values of PEMFCs model. Further calculations of statistical indices are performed to validate the robustness of obtained results by the MRFO. Through comprehensive performance assessments, it can be confirmed that MRFO is very promising tool for the effective extraction of PEMFCs' model and suggested to be applied for solving other engineering problems.
• Manta rays foraging optimizer (MRFO) is applied to generate best values of PEMFC's parameters.• Three commercial PEMFC stacks are investigated with exhaustive simulations.• The parameters of MRFO‐PEMFC stack models are attested using the empirical dataset points.• Necessary performance assessments are made which signify the cropped MRFO's results. In this article, a recently developed bio‐inspired based manta rays foraging optimizer (MRFO) is attempted for reliable and accurate extraction of the model uncertain parameters of proton exchange membrane fuel cells (PEMFCs). The parameter estimation is formulated as a non‐linear optimization problem subject to set of restrictions. The great development and tremendous revolution of computation heuristic‐based algorithms are the impetus of the authors to apply the MRFO to solve this constrained optimization problem resulting in a precise PEMFC model. Three case studies of typical field PEMFC stacks namely Ballard type Mark V, NedStack type PS6, and Horizon type H‐12. Various I to V datasets are demonstrated to appraise the performance of MRFO among other recent optimizers available in the literature. To be objective and for sake of quantifications, the best scores of minimum fitness values are 0.8533, 2.1360, and 0.0966 for the later said PEMFC stacks, correspondingly. At a later stage, production of various characteristics under varying operating conditions such as changeable cell temperature and regulating pressures are established using the generated best values of PEMFCs model. Further calculations of statistical indices are performed to validate the robustness of obtained results by the MRFO. Through comprehensive performance assessments, it can be confirmed that MRFO is very promising tool for the effective extraction of PEMFCs' model and suggested to be applied for solving other engineering problems. |
| Author | Selem, Sameh I. Hasanien, Hany M. El‐Fergany, Attia A. |
| Author_xml | – sequence: 1 givenname: Sameh I. surname: Selem fullname: Selem, Sameh I. organization: Zagazig University – sequence: 2 givenname: Hany M. surname: Hasanien fullname: Hasanien, Hany M. organization: Ain Shams University – sequence: 3 givenname: Attia A. orcidid: 0000-0003-3476-1361 surname: El‐Fergany fullname: El‐Fergany, Attia A. email: el_fergany@zu.edu.eg, el_fergany@ieee.org organization: Zagazig University |
| BookMark | eNp10N1LwzAQAPAgE9ym-C8EfNiDdOara_MoY_MDxSEKewtZeh0ZbTOTDJ1_va3zSRQODu5-3HE3QL3GNYDQOSVjSgi7Aj9OmRBHqE-JlAmlYtlDfcInPJEkW56gQQgbQtoezfrofqG9riGCDxg-otcmWtdgV-LF7HE-HQVcuwIqvAu2WeNaN1Fjr_cBl87rdVdz22hr-wn-FB2Xugpw9pOH6HU-e5neJg9PN3fT64fEcJaLRBsCHHLGjDRpKrIJNVKsmCSwMpqVkKVspaGQaUpFYQqecmpKXoCgJc3b4EN0cZi79e5tByGqjdv5pl2pGM8nUuRcslYlB2W8C8FDqYyNujuuPdJWihLVvUuBV927Wj_65bfe1trv_5CXB_luK9j_x9Ts-Vt_AYwLeZ8 |
| CitedBy_id | crossref_primary_10_3390_electronics10222834 crossref_primary_10_1002_er_6946 crossref_primary_10_1038_s41598_024_78001_5 crossref_primary_10_1080_15567036_2022_2120930 crossref_primary_10_1109_ACCESS_2022_3193233 crossref_primary_10_3390_en13153847 crossref_primary_10_1016_j_engappai_2020_104105 crossref_primary_10_1016_j_jpowsour_2020_228815 crossref_primary_10_1016_j_fuel_2023_127586 crossref_primary_10_1002_er_7597 crossref_primary_10_1016_j_egyr_2020_03_010 crossref_primary_10_1016_j_energy_2022_125530 crossref_primary_10_3389_fenrg_2022_964042 crossref_primary_10_1002_er_8208 crossref_primary_10_1109_ACCESS_2020_3022919 crossref_primary_10_1002_er_7629 crossref_primary_10_1016_j_energy_2024_130601 crossref_primary_10_1515_ijeeps_2023_0025 crossref_primary_10_1002_er_7580 crossref_primary_10_1016_j_energy_2022_124454 crossref_primary_10_3389_feart_2022_870299 crossref_primary_10_1002_er_8555 crossref_primary_10_1080_15325008_2023_2210574 crossref_primary_10_1049_gtd2_13173 crossref_primary_10_1016_j_energy_2021_119836 crossref_primary_10_1080_15567036_2023_2224261 crossref_primary_10_1007_s11581_024_05931_5 crossref_primary_10_1016_j_ijhydene_2020_06_256 crossref_primary_10_1007_s10586_024_05064_4 crossref_primary_10_1016_j_apenergy_2024_123297 crossref_primary_10_1016_j_egyr_2024_03_006 crossref_primary_10_1016_j_enconman_2020_113777 crossref_primary_10_1007_s41939_025_00814_2 crossref_primary_10_1038_s41598_024_81160_0 crossref_primary_10_1016_j_enconman_2022_115521 crossref_primary_10_3390_technologies12090156 crossref_primary_10_1016_j_energy_2022_123530 crossref_primary_10_1155_2024_7616065 crossref_primary_10_1002_er_7576 crossref_primary_10_1016_j_rser_2025_115603 crossref_primary_10_1007_s00202_024_02935_2 crossref_primary_10_1109_ACCESS_2024_3404641 crossref_primary_10_1007_s11581_025_06390_2 crossref_primary_10_3390_en15217893 crossref_primary_10_1016_j_eswa_2022_118999 crossref_primary_10_1016_j_ijhydene_2024_04_020 crossref_primary_10_1016_j_energy_2023_130130 crossref_primary_10_1016_j_solener_2020_09_047 crossref_primary_10_1016_j_ijhydene_2024_08_328 crossref_primary_10_1007_s11600_024_01359_7 crossref_primary_10_1049_rpg2_12688 crossref_primary_10_1007_s00366_021_01312_y crossref_primary_10_1016_j_renene_2020_12_131 crossref_primary_10_1016_j_ecoinf_2021_101519 crossref_primary_10_1016_j_ijepes_2024_109849 crossref_primary_10_3390_fractalfract6040194 crossref_primary_10_1016_j_energy_2022_123830 crossref_primary_10_1109_ACCESS_2024_3419561 crossref_primary_10_1016_j_enconman_2020_113048 crossref_primary_10_1016_j_energy_2021_121096 crossref_primary_10_1016_j_enconman_2021_114099 crossref_primary_10_1080_15567036_2020_1769230 crossref_primary_10_1109_ACCESS_2024_3453594 crossref_primary_10_1007_s40435_025_01664_z crossref_primary_10_1002_er_5527 crossref_primary_10_1007_s42235_024_00481_y crossref_primary_10_1109_ACCESS_2023_3236023 crossref_primary_10_1016_j_energy_2022_126165 crossref_primary_10_1016_j_compbiomed_2021_104827 crossref_primary_10_1080_10106049_2021_1975832 crossref_primary_10_1016_j_apenergy_2024_122857 crossref_primary_10_1016_j_ijhydene_2021_03_105 crossref_primary_10_3390_su15054625 crossref_primary_10_1016_j_heliyon_2024_e36678 crossref_primary_10_1007_s13369_021_06102_8 crossref_primary_10_1007_s42452_020_04013_1 crossref_primary_10_4018_IJSIR_349907 crossref_primary_10_1038_s41598_025_93162_7 crossref_primary_10_3390_su14074189 crossref_primary_10_1109_TIA_2021_3116549 crossref_primary_10_1177_01423312231160819 crossref_primary_10_1016_j_ijepes_2023_109140 crossref_primary_10_1007_s11831_022_09721_y crossref_primary_10_1038_s41598_023_46847_w crossref_primary_10_1016_j_knosys_2023_111134 crossref_primary_10_3389_fenrg_2024_1384649 crossref_primary_10_1002_er_5756 crossref_primary_10_3390_su12198127 crossref_primary_10_1016_j_cma_2024_116781 crossref_primary_10_3390_pr10122723 crossref_primary_10_1007_s11831_025_10363_z crossref_primary_10_1016_j_enconman_2025_119917 crossref_primary_10_1016_j_rineng_2024_103369 crossref_primary_10_1007_s00521_025_11552_4 crossref_primary_10_3390_su151310590 crossref_primary_10_1016_j_eswa_2021_116355 crossref_primary_10_1002_er_7361 crossref_primary_10_1016_j_egyr_2020_06_002 crossref_primary_10_1016_j_egyr_2022_02_066 |
| Cites_doi | 10.1016/j.enconman.2018.08.082 10.1016/j.ijhydene.2012.10.026 10.1016/j.enconman.2018.02.028 10.1016/j.enconman.2018.12.088 10.1049/iet-rpg.2017.0232 10.1002/er.4859 10.1109/TEVC.2005.856205 10.1016/j.ijhydene.2013.12.110 10.1016/j.enconman.2018.01.077 10.1016/j.energy.2015.06.081 10.1002/er.1787 10.1002/er.4215 10.1016/j.egyr.2019.11.013 10.1016/j.ijhydene.2018.06.032 10.1016/j.enconman.2019.02.091 10.1016/j.enconman.2018.03.002 10.1002/er.4809 10.1016/S0378-7753(99)00484-X 10.1007/s11831-019-09353-9 10.1016/j.est.2018.05.014 10.1016/j.ijhydene.2016.03.101 10.1016/j.energy.2015.03.117 10.1016/j.energy.2019.02.106 10.1016/j.enconman.2018.12.057 10.1016/j.ijhydene.2018.11.140 10.1109/TSG.2014.2338398 10.1016/j.renene.2017.12.051 10.1016/j.ijhydene.2013.01.058 10.1016/j.ijhydene.2019.05.022 10.1016/j.enconman.2019.112197 10.1016/j.engappai.2019.103300 10.1016/j.jpowsour.2018.08.082 10.1080/15567036.2011.629277 10.3390/en12101884 10.1016/j.ijhydene.2014.05.052 10.1016/j.energy.2017.11.014 10.1016/j.energy.2018.08.104 10.1002/er.4815 10.1016/j.enconman.2014.08.062 10.1002/fuce.201500190 10.1016/j.enconman.2018.02.025 10.1016/j.renene.2017.04.036 10.1016/j.ijhydene.2016.07.056 10.1016/j.enconman.2019.01.086 10.1016/j.renene.2019.08.046 10.1016/j.energy.2019.06.152 10.1016/j.energy.2018.10.038 10.1016/j.engappai.2013.07.016 |
| ContentType | Journal Article |
| Copyright | 2020 John Wiley & Sons Ltd 2020 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2020 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| DOI | 10.1002/er.5244 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-114X |
| EndPage | 4640 |
| ExternalDocumentID | 10_1002_er_5244 ER5244 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION O8X PHGZM PHGZT PQGLB 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| ID | FETCH-LOGICAL-c3284-ac0e3e822c9c554761c94b290ebca2fe752baed95514dcd3531cf3de41f18f183 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 119 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511719700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0363-907X |
| IngestDate | Wed Aug 13 09:27:12 EDT 2025 Tue Nov 18 22:02:32 EST 2025 Sat Nov 29 02:58:44 EST 2025 Wed Jan 22 16:34:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3284-ac0e3e822c9c554761c94b290ebca2fe752baed95514dcd3531cf3de41f18f183 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3476-1361 |
| PQID | 2386948392 |
| PQPubID | 996365 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2386948392 crossref_citationtrail_10_1002_er_5244 crossref_primary_10_1002_er_5244 wiley_primary_10_1002_er_5244_ER5244 |
| PublicationCentury | 2000 |
| PublicationDate | May 2020 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
| PublicationTitle | International journal of energy research |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2018; 164 2018; 163 2017; 42 2018; 143 2015; 6 2018; 160 2018; 162 2019; 5 2018; 405 2019; 12 2000; 86 2014; 27 2918; 18 2019; 201 2011; 35 2020; 146 2012; 59 2017; 111 2019; 185 2018; 43 2016; 16 2019; 182 2012; 34 2019; 183 2019; 166 2014; 88 2019; 187 2018; 174 2013; 38 2019; 42 2018; 119 2019; 44 2019; 43 2019b 2015; 86 2005; 9 2019 2020; 44 2015; 90 2014; 39 2020; 87 2019; 173 2018; 12 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 Askarzadeh A (e_1_2_9_27_1) 2012; 59 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 166 start-page: 451 year: 2019 end-page: 461 article-title: Optimized parameters of SOFC for steady state and transient simulations using interior search algorithm publication-title: Energy – volume: 18 start-page: 327 year: 2918 end-page: 332 article-title: System identification black box approach for modeling performance of PEM fuel cell publication-title: J Energy Storage – volume: 9 start-page: 721 issue: 6 year: 2005 end-page: 735 article-title: Coevolutionary free lunches publication-title: IEEE Trans Evol Comput – volume: 27 start-page: 28 year: 2014 end-page: 40 article-title: Parameter optimization of PEMFC model with improved multi‐strategy adaptive differential evolution publication-title: Eng Appl Artif Intell – volume: 39 start-page: 3837 issue: 8 year: 2014 end-page: 3854 article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models publication-title: Int J Hydrog Energy – volume: 90 start-page: 1334 year: 2015 end-page: 1341 article-title: Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm publication-title: Energy – volume: 12 start-page: 1884 year: 2019 article-title: Steady‐state modeling of fuel cells based on atom search optimizer publication-title: Energies – volume: 111 start-page: 455 year: 2017 end-page: 462 article-title: Effective parameters' identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer publication-title: Renew Energy – volume: 146 start-page: 1833 year: 2020 end-page: 1845 article-title: A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell publication-title: Renew Energy – volume: 162 start-page: 159 year: 2018 end-page: 175 article-title: A real‐time capable quasi‐2D proton exchange membrane fuel cell model publication-title: Energ Convers Manage – volume: 405 start-page: 150 year: 2018 end-page: 161 article-title: Online estimation of the electrochemical impedance of polymer electrolyte membrane fuel cells using broad‐band current excitation publication-title: J Power Sources – volume: 88 start-page: 554 year: 2014 end-page: 564 article-title: Multiphysical, multidimensional real‐time PEM fuel cell modeling for embedded applications publication-title: Energ Convers Manage – volume: 201 year: 2019 article-title: Semi‐empirical PEM fuel cells model using whale optimization algorithm publication-title: Energ Convers Manage – volume: 44 start-page: 18438 year: 2019 end-page: 18449 article-title: Application of flower pollination algorithm for enhanced proton exchange membrane fuel cell modelling publication-title: Int J Hydrog Energy – volume: 164 start-page: 639 year: 2018 end-page: 654 article-title: Sensitivity analysis of uncertain parameters based on an improved proton exchange membrane fuel cell analytical model publication-title: Energ Convers Manage – volume: 86 start-page: 173 issue: 1–2 year: 2000 end-page: 180 article-title: Development and application of a generalised steady‐state electrochemical model for a PEM fuel cell publication-title: J Power Sources – volume: 44 start-page: 3075 issue: 5 year: 2019 end-page: 3087 article-title: Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells publication-title: Int J Hydrog Energy – volume: 185 start-page: 455 year: 2019 end-page: 464 article-title: A novel intelligent‐based method to control the output voltage of proton exchange membrane fuel cell publication-title: Energ Convers Manage – volume: 44 start-page: 4 issue: 1 year: 2020 end-page: 25 article-title: Importance and applications of DOE/optimization methods in PEM fuel cells: a review publication-title: Int J Energy Res – volume: 163 start-page: 22 year: 2018 end-page: 37 article-title: Optimization of the proton exchange membrane fuel cell hybrid power system for residential buildings publication-title: Energ Convers Manage – volume: 16 start-page: 640 issue: 5 year: 2016 end-page: 645 article-title: Parameter estimation for a proton exchange membrane fuel cell model using GRG technique publication-title: Fuel Cell – year: 2019b – volume: 38 start-page: 5796 issue: 14 year: 2013 end-page: 5806 article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell publication-title: Int J Hydrog Energy – volume: 12 start-page: 9 issue: 1 year: 2018 end-page: 17 article-title: Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimizer publication-title: IET Renew Power Gen – volume: 183 start-page: 149 year: 2019 end-page: 158 article-title: Optimization of critical parameters of PEM fuel cell using TLBO‐DE based on Elman neural network publication-title: Energ Convers Manage – volume: 43 start-page: 8623 issue: 14 year: 2019 end-page: 8632 article-title: Optimal parameter identification for the proton exchange membrane fuel cell using satin bowerbird optimizer publication-title: Int J Energy Res – volume: 86 start-page: 139 year: 2015 end-page: 151 article-title: Parameter extraction of different fuel cell models with transferred adaptive differential evolution publication-title: Energy – volume: 38 start-page: 219 issue: 1 year: 2013 end-page: 228 article-title: An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells publication-title: Int J Hydrog Energy – volume: 43 start-page: 14751 issue: 31 year: 2018 end-page: 14761 article-title: Steady‐state and dynamic models of solid oxide fuel cells based on satin bowerbird optimizer publication-title: Int J Hydrog Energy – volume: 35 start-page: 1258 issue: 14 year: 2011 end-page: 1265 article-title: Optimization of PEMFC model parameters with a modified particle swarm optimization publication-title: Int J Energy Res – volume: 173 start-page: 457 year: 2019 end-page: 467 article-title: Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder‐Mead simplex method publication-title: Energy – volume: 6 start-page: 158 issue: 1 year: 2015 end-page: 165 article-title: A fuzzy logic controller for autonomous operation of a voltage source converter‐based distributed generation system publication-title: IEEE Trans Smart Grid – volume: 163 start-page: 699 year: 2018 end-page: 711 article-title: Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor publication-title: Energy – volume: 59 start-page: 3473 issue: 9 year: 2012 end-page: 3480 article-title: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model publication-title: IEEE Trans Power Electron – volume: 42 start-page: 4697 issue: 15 year: 2019 end-page: 4709 article-title: Multi‐phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field publication-title: Int J Energy Res – year: 2019 article-title: Computational methods for optimal planning of hybrid renewable microgrids: a comprehensive review and challenges publication-title: Arch Comput Meth Eng – volume: 39 start-page: 11165 issue: 21 year: 2014 end-page: 11174 article-title: A backtracking search algorithm combined with Burger's chaotic map for parameter estimation of PEMFC electrochemical model publication-title: Int J Hydrog Energy – volume: 42 start-page: 1499 issue: 2 year: 2017 end-page: 1509 article-title: Identification of a PEMFC fractional order model publication-title: Int J Hydrog Energy – volume: 160 start-page: 486 year: 2018 end-page: 494 article-title: Investigation of micro‐combined heat and power application of PEM fuel cell systems publication-title: Energ Convers Manage – volume: 87 year: 2020 article-title: Manta ray foraging optimization: an effective bio‐inspired optimizer for engineering applications publication-title: Eng Appl Artif Intell – volume: 187 start-page: 565 year: 2019 end-page: 577 article-title: A non‐iterative approach for maximum power extraction from PEM fuel cell using resistance estimation publication-title: Energ Convers Manage – volume: 42 start-page: 1366 issue: 2 year: 2017 end-page: 1374 article-title: Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production publication-title: Int J Hydrog Energy – volume: 183 start-page: 912 year: 2019 end-page: 925 article-title: Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms publication-title: Energy – volume: 174 start-page: 913 year: 2018 end-page: 921 article-title: Fast and accurate parameter extraction for different types of fuel cells with decomposition and nature‐inspired optimization method publication-title: Energ Convers Manage – volume: 182 start-page: 1 year: 2019 end-page: 8 article-title: Shark smell optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model publication-title: Energ Convers Manage – volume: 5 start-page: 1616 year: 2019 end-page: 1625 article-title: Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm publication-title: Energy Rep – volume: 43 start-page: 8136 issue: 14 year: 2019 end-page: 8147 article-title: Effective methodology based on neural network optimizer for extracting model parameters of PEM fuel cells publication-title: Int J Energy Res – volume: 34 start-page: 1591 issue: 17 year: 2012 end-page: 1598 article-title: The performance of serially and parallelly connected microbial fuel cells publication-title: Energy Sources A – volume: 143 start-page: 634 year: 2018 end-page: 644 article-title: Multi‐verse optimizer for identifying the optimal parameters of PEMFC model publication-title: Energy – volume: 119 start-page: 641 year: 2018 end-page: 648 article-title: Extracting optimal parameters of PEM fuel cells using salp swarm optimizer publication-title: Renew Energy – ident: e_1_2_9_9_1 doi: 10.1016/j.enconman.2018.08.082 – ident: e_1_2_9_31_1 doi: 10.1016/j.ijhydene.2012.10.026 – ident: e_1_2_9_21_1 doi: 10.1016/j.enconman.2018.02.028 – ident: e_1_2_9_16_1 doi: 10.1016/j.enconman.2018.12.088 – volume: 59 start-page: 3473 issue: 9 year: 2012 ident: e_1_2_9_27_1 article-title: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model publication-title: IEEE Trans Power Electron – ident: e_1_2_9_43_1 doi: 10.1049/iet-rpg.2017.0232 – ident: e_1_2_9_30_1 doi: 10.1002/er.4859 – ident: e_1_2_9_46_1 doi: 10.1109/TEVC.2005.856205 – ident: e_1_2_9_40_1 doi: 10.1016/j.ijhydene.2013.12.110 – ident: e_1_2_9_13_1 doi: 10.1016/j.enconman.2018.01.077 – ident: e_1_2_9_32_1 doi: 10.1016/j.energy.2015.06.081 – ident: e_1_2_9_41_1 doi: 10.1002/er.1787 – ident: e_1_2_9_10_1 doi: 10.1002/er.4215 – ident: e_1_2_9_51_1 doi: 10.1016/j.egyr.2019.11.013 – ident: e_1_2_9_8_1 doi: 10.1016/j.ijhydene.2018.06.032 – ident: e_1_2_9_17_1 doi: 10.1016/j.enconman.2019.02.091 – ident: e_1_2_9_24_1 doi: 10.1016/j.enconman.2018.03.002 – ident: e_1_2_9_7_1 doi: 10.1002/er.4809 – ident: e_1_2_9_49_1 doi: 10.1016/S0378-7753(99)00484-X – ident: e_1_2_9_2_1 doi: 10.1007/s11831-019-09353-9 – ident: e_1_2_9_25_1 doi: 10.1016/j.est.2018.05.014 – ident: e_1_2_9_23_1 doi: 10.1016/j.ijhydene.2016.03.101 – ident: e_1_2_9_34_1 doi: 10.1016/j.energy.2015.03.117 – ident: e_1_2_9_28_1 doi: 10.1016/j.energy.2019.02.106 – ident: e_1_2_9_26_1 doi: 10.1016/j.enconman.2018.12.057 – ident: e_1_2_9_35_1 doi: 10.1016/j.ijhydene.2018.11.140 – ident: e_1_2_9_3_1 doi: 10.1109/TSG.2014.2338398 – ident: e_1_2_9_29_1 doi: 10.1016/j.renene.2017.12.051 – ident: e_1_2_9_36_1 doi: 10.1016/j.ijhydene.2013.01.058 – ident: e_1_2_9_45_1 doi: 10.1016/j.ijhydene.2019.05.022 – ident: e_1_2_9_6_1 doi: 10.1016/j.enconman.2019.112197 – ident: e_1_2_9_47_1 doi: 10.1016/j.engappai.2019.103300 – ident: e_1_2_9_19_1 doi: 10.1016/j.jpowsour.2018.08.082 – ident: e_1_2_9_48_1 doi: 10.1080/15567036.2011.629277 – ident: e_1_2_9_11_1 doi: 10.3390/en12101884 – ident: e_1_2_9_39_1 doi: 10.1016/j.ijhydene.2014.05.052 – ident: e_1_2_9_42_1 doi: 10.1016/j.energy.2017.11.014 – ident: e_1_2_9_12_1 doi: 10.1016/j.energy.2018.08.104 – ident: e_1_2_9_15_1 doi: 10.1002/er.4815 – ident: e_1_2_9_18_1 doi: 10.1016/j.enconman.2014.08.062 – ident: e_1_2_9_22_1 doi: 10.1002/fuce.201500190 – ident: e_1_2_9_14_1 doi: 10.1016/j.enconman.2018.02.025 – ident: e_1_2_9_37_1 doi: 10.1016/j.renene.2017.04.036 – ident: e_1_2_9_20_1 doi: 10.1016/j.ijhydene.2016.07.056 – ident: e_1_2_9_4_1 doi: 10.1016/j.enconman.2019.01.086 – ident: e_1_2_9_44_1 doi: 10.1016/j.renene.2019.08.046 – ident: e_1_2_9_38_1 doi: 10.1016/j.energy.2019.06.152 – ident: e_1_2_9_50_1 – ident: e_1_2_9_5_1 doi: 10.1016/j.energy.2018.10.038 – ident: e_1_2_9_33_1 doi: 10.1016/j.engappai.2013.07.016 |
| SSID | ssj0009917 |
| Score | 2.588505 |
| Snippet | Summary
In this article, a recently developed bio‐inspired based manta rays foraging optimizer (MRFO) is attempted for reliable and accurate extraction of the... In this article, a recently developed bio‐inspired based manta rays foraging optimizer (MRFO) is attempted for reliable and accurate extraction of the model... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4629 |
| SubjectTerms | Algorithms Computation Foraging Marine fishes Mathematical models modelling and simulations Optimization optimization methods Parameter estimation Parameter uncertainty Parameters parameters extraction PEMFCs Performance assessment Proton exchange membrane fuel cells Stacks |
| Title | Parameters extraction of PEMFC's model using manta rays foraging optimizer |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.5244 https://www.proquest.com/docview/2386948392 |
| Volume | 44 |
| WOSCitedRecordID | wos000511719700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-114X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009917 issn: 0363-907X databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB209aAHv8VqlT0UPcU239mj1BYRLaVY6C1sJrtSsK0kVdBf7-wmtRURBCGQyw4sO7szb5LZ9wAa5EipyLdWxNPA8kLlW9xTruUlLscIqYCw0YhNhL1eNBrx_orUV8EP8fXBTZ8ME6_1ARdJ3lyShsrsyqfctA5Vh3atX4HqzaA7vF8y7nIjt2t-VFIFOCpuzGrjZmn6PRUt8eUqSjVpprvzjwnuwnaJLdl1sRn2YE1O92FrhXHwAO76QndjaUpNRmE5K641sJli_c5Dt32ZMyONw3Q7_BOb0LILlon3nBG2NXpGbEYxZjL-kNkhDLudx_atVcopWOhSErIEtqQrCRAgRwIRYWAj9xKHt3Q_lKNk6DuJkCnXGCrF1CUPonJT6dnKjuhxj6AynU3lMTACOa0gSX0VhcLDFEUL0RYSXVToBFFag4vFysZYco1ryYvnuGBJdmKZxXpxasC-Br4U9Bo_h9QXronL85XHBDQC7mlwV4OGccJv5nFnoF8nfxt2CpuOLqhNR2MdKvPsVZ7BBr7Nx3l2Xm6xT1nx1K8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSwJBEB9Kg-qh78iy2gepp8v78u72MUyxUhFR8O0453ZDSI3Tgvrrm90704ggCA7uZQeOmdmZ3-zN_gagRIYUkmxrBDz2DNeXFYO70jHcocMxQCogLNTDJvx2OxgMeCfrqlR3YVJ-iK8DN7UzdLxWG1wdSJeXrKEiualQclqHvEtORN6dv-vW-80l5S7X83b1n0oqAQfplVklXM5Ev-eiJcBchak6z9R3__OFe7CToUt2m7rDPqyJyQFsr3AOHsJDJ1L9WIpUk1FgTtKLDWwqWafWqlevZ0wPx2GqIf6JjUnxEUui9xkjdKsnGrEpRZnx6EMkR9Cv13rVhpENVDDQoTRkRGgKRxAkQI4EI3zPQu4ObW6qjihbCr9iDyMRc4WiYowdsiFKJxauJa2AHucYcpPpRJwAI5hjesO4IgM_cjHGyES0IoEOSrS9IC7A1UK1IWZs42roxXOY8iTboUhCpZwCsK-FLynBxs8lxYVtwmyHzUKCGh53FbwrQElb4TfxsNZVr9O_LbuEzUav1Qyb9-3HM9iyVXmt-xuLkJsnr-IcNvBtPpolF5m_fQIbttif |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60FdGDb7FadQ9FT7F5NckepW3wUUsoFnoL6eyuFOyDtAr6693dpA8RQRACuezAsrM7800y-30AFelILqRvjYAyz3B9UTOoKxzD7TsUA5QFhIVabMJvt4Nej0Z5V6W6C5PxQyw-uKmToeO1OuB8wkR1yRrK05uaTE7rUHSVhEwBio1O2G0tKXep1tvVfyplCdjLrswq42pu-j0XLQHmKkzVeSbc_c8M92AnR5fkNtsO-7DGRwewvcI5eAgPUaL6sRSpJpGBOc0uNpCxIFHzKaxfT4kWxyGqIf6FDOXCJyRNPqZEolutaETGMsoMB588PYJu2Hyu3xm5oIKBjkxDRoImd7iEBEhRwgjfs5C6fZuaqiPKFtyv2f2EM6pQFEPmSB-icBh3LWEF8nGOoTAaj_gJEAlzTK_PaiLwExcZJiailXB0UKDtBawEV_OljTFnG1eiF69xxpNsxzyN1eKUgCwGTjKCjZ9DynPfxPkJm8YSanjUVfCuBBXthd_M42ZHvU7_NuwSNqNGGLfu249nsGWr6lq3N5ahMEvf-Dls4PtsME0v8u32BeDf2Bo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameters+extraction+of+PEMFC%27s+model+using+manta+rays+foraging+optimizer&rft.jtitle=International+journal+of+energy+research&rft.au=Selem%2C+Sameh+I&rft.au=Hasanien%2C+Hany+M&rft.au=Attia+A+El%E2%80%90Fergany&rft.date=2020-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=44&rft.issue=6&rft.spage=4629&rft.epage=4640&rft_id=info:doi/10.1002%2Fer.5244&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |