Parameters extraction of PEMFC's model using manta rays foraging optimizer

Summary In this article, a recently developed bio‐inspired based manta rays foraging optimizer (MRFO) is attempted for reliable and accurate extraction of the model uncertain parameters of proton exchange membrane fuel cells (PEMFCs). The parameter estimation is formulated as a non‐linear optimizati...

Full description

Saved in:
Bibliographic Details
Published in:International journal of energy research Vol. 44; no. 6; pp. 4629 - 4640
Main Authors: Selem, Sameh I., Hasanien, Hany M., El‐Fergany, Attia A.
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Inc 01.05.2020
Subjects:
ISSN:0363-907X, 1099-114X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary In this article, a recently developed bio‐inspired based manta rays foraging optimizer (MRFO) is attempted for reliable and accurate extraction of the model uncertain parameters of proton exchange membrane fuel cells (PEMFCs). The parameter estimation is formulated as a non‐linear optimization problem subject to set of restrictions. The great development and tremendous revolution of computation heuristic‐based algorithms are the impetus of the authors to apply the MRFO to solve this constrained optimization problem resulting in a precise PEMFC model. Three case studies of typical field PEMFC stacks namely Ballard type Mark V, NedStack type PS6, and Horizon type H‐12. Various I to V datasets are demonstrated to appraise the performance of MRFO among other recent optimizers available in the literature. To be objective and for sake of quantifications, the best scores of minimum fitness values are 0.8533, 2.1360, and 0.0966 for the later said PEMFC stacks, correspondingly. At a later stage, production of various characteristics under varying operating conditions such as changeable cell temperature and regulating pressures are established using the generated best values of PEMFCs model. Further calculations of statistical indices are performed to validate the robustness of obtained results by the MRFO. Through comprehensive performance assessments, it can be confirmed that MRFO is very promising tool for the effective extraction of PEMFCs' model and suggested to be applied for solving other engineering problems. • Manta rays foraging optimizer (MRFO) is applied to generate best values of PEMFC's parameters.• Three commercial PEMFC stacks are investigated with exhaustive simulations.• The parameters of MRFO‐PEMFC stack models are attested using the empirical dataset points.• Necessary performance assessments are made which signify the cropped MRFO's results.
AbstractList Summary In this article, a recently developed bio‐inspired based manta rays foraging optimizer (MRFO) is attempted for reliable and accurate extraction of the model uncertain parameters of proton exchange membrane fuel cells (PEMFCs). The parameter estimation is formulated as a non‐linear optimization problem subject to set of restrictions. The great development and tremendous revolution of computation heuristic‐based algorithms are the impetus of the authors to apply the MRFO to solve this constrained optimization problem resulting in a precise PEMFC model. Three case studies of typical field PEMFC stacks namely Ballard type Mark V, NedStack type PS6, and Horizon type H‐12. Various I to V datasets are demonstrated to appraise the performance of MRFO among other recent optimizers available in the literature. To be objective and for sake of quantifications, the best scores of minimum fitness values are 0.8533, 2.1360, and 0.0966 for the later said PEMFC stacks, correspondingly. At a later stage, production of various characteristics under varying operating conditions such as changeable cell temperature and regulating pressures are established using the generated best values of PEMFCs model. Further calculations of statistical indices are performed to validate the robustness of obtained results by the MRFO. Through comprehensive performance assessments, it can be confirmed that MRFO is very promising tool for the effective extraction of PEMFCs' model and suggested to be applied for solving other engineering problems. • Manta rays foraging optimizer (MRFO) is applied to generate best values of PEMFC's parameters.• Three commercial PEMFC stacks are investigated with exhaustive simulations.• The parameters of MRFO‐PEMFC stack models are attested using the empirical dataset points.• Necessary performance assessments are made which signify the cropped MRFO's results.
In this article, a recently developed bio‐inspired based manta rays foraging optimizer (MRFO) is attempted for reliable and accurate extraction of the model uncertain parameters of proton exchange membrane fuel cells (PEMFCs). The parameter estimation is formulated as a non‐linear optimization problem subject to set of restrictions. The great development and tremendous revolution of computation heuristic‐based algorithms are the impetus of the authors to apply the MRFO to solve this constrained optimization problem resulting in a precise PEMFC model. Three case studies of typical field PEMFC stacks namely Ballard type Mark V, NedStack type PS6, and Horizon type H‐12. Various I to V datasets are demonstrated to appraise the performance of MRFO among other recent optimizers available in the literature. To be objective and for sake of quantifications, the best scores of minimum fitness values are 0.8533, 2.1360, and 0.0966 for the later said PEMFC stacks, correspondingly. At a later stage, production of various characteristics under varying operating conditions such as changeable cell temperature and regulating pressures are established using the generated best values of PEMFCs model. Further calculations of statistical indices are performed to validate the robustness of obtained results by the MRFO. Through comprehensive performance assessments, it can be confirmed that MRFO is very promising tool for the effective extraction of PEMFCs' model and suggested to be applied for solving other engineering problems.
Author Selem, Sameh I.
Hasanien, Hany M.
El‐Fergany, Attia A.
Author_xml – sequence: 1
  givenname: Sameh I.
  surname: Selem
  fullname: Selem, Sameh I.
  organization: Zagazig University
– sequence: 2
  givenname: Hany M.
  surname: Hasanien
  fullname: Hasanien, Hany M.
  organization: Ain Shams University
– sequence: 3
  givenname: Attia A.
  orcidid: 0000-0003-3476-1361
  surname: El‐Fergany
  fullname: El‐Fergany, Attia A.
  email: el_fergany@zu.edu.eg, el_fergany@ieee.org
  organization: Zagazig University
BookMark eNp10N1LwzAQAPAgE9ym-C8EfNiDdOara_MoY_MDxSEKewtZeh0ZbTOTDJ1_va3zSRQODu5-3HE3QL3GNYDQOSVjSgi7Aj9OmRBHqE-JlAmlYtlDfcInPJEkW56gQQgbQtoezfrofqG9riGCDxg-otcmWtdgV-LF7HE-HQVcuwIqvAu2WeNaN1Fjr_cBl87rdVdz22hr-wn-FB2Xugpw9pOH6HU-e5neJg9PN3fT64fEcJaLRBsCHHLGjDRpKrIJNVKsmCSwMpqVkKVspaGQaUpFYQqecmpKXoCgJc3b4EN0cZi79e5tByGqjdv5pl2pGM8nUuRcslYlB2W8C8FDqYyNujuuPdJWihLVvUuBV927Wj_65bfe1trv_5CXB_luK9j_x9Ts-Vt_AYwLeZ8
CitedBy_id crossref_primary_10_3390_electronics10222834
crossref_primary_10_1002_er_6946
crossref_primary_10_1038_s41598_024_78001_5
crossref_primary_10_1080_15567036_2022_2120930
crossref_primary_10_1109_ACCESS_2022_3193233
crossref_primary_10_3390_en13153847
crossref_primary_10_1016_j_engappai_2020_104105
crossref_primary_10_1016_j_jpowsour_2020_228815
crossref_primary_10_1016_j_fuel_2023_127586
crossref_primary_10_1002_er_7597
crossref_primary_10_1016_j_egyr_2020_03_010
crossref_primary_10_1016_j_energy_2022_125530
crossref_primary_10_3389_fenrg_2022_964042
crossref_primary_10_1002_er_8208
crossref_primary_10_1109_ACCESS_2020_3022919
crossref_primary_10_1002_er_7629
crossref_primary_10_1016_j_energy_2024_130601
crossref_primary_10_1515_ijeeps_2023_0025
crossref_primary_10_1002_er_7580
crossref_primary_10_1016_j_energy_2022_124454
crossref_primary_10_3389_feart_2022_870299
crossref_primary_10_1002_er_8555
crossref_primary_10_1080_15325008_2023_2210574
crossref_primary_10_1049_gtd2_13173
crossref_primary_10_1016_j_energy_2021_119836
crossref_primary_10_1080_15567036_2023_2224261
crossref_primary_10_1007_s11581_024_05931_5
crossref_primary_10_1016_j_ijhydene_2020_06_256
crossref_primary_10_1007_s10586_024_05064_4
crossref_primary_10_1016_j_apenergy_2024_123297
crossref_primary_10_1016_j_egyr_2024_03_006
crossref_primary_10_1016_j_enconman_2020_113777
crossref_primary_10_1007_s41939_025_00814_2
crossref_primary_10_1038_s41598_024_81160_0
crossref_primary_10_1016_j_enconman_2022_115521
crossref_primary_10_3390_technologies12090156
crossref_primary_10_1016_j_energy_2022_123530
crossref_primary_10_1155_2024_7616065
crossref_primary_10_1002_er_7576
crossref_primary_10_1016_j_rser_2025_115603
crossref_primary_10_1007_s00202_024_02935_2
crossref_primary_10_1109_ACCESS_2024_3404641
crossref_primary_10_1007_s11581_025_06390_2
crossref_primary_10_3390_en15217893
crossref_primary_10_1016_j_eswa_2022_118999
crossref_primary_10_1016_j_ijhydene_2024_04_020
crossref_primary_10_1016_j_energy_2023_130130
crossref_primary_10_1016_j_solener_2020_09_047
crossref_primary_10_1016_j_ijhydene_2024_08_328
crossref_primary_10_1007_s11600_024_01359_7
crossref_primary_10_1049_rpg2_12688
crossref_primary_10_1007_s00366_021_01312_y
crossref_primary_10_1016_j_renene_2020_12_131
crossref_primary_10_1016_j_ecoinf_2021_101519
crossref_primary_10_1016_j_ijepes_2024_109849
crossref_primary_10_3390_fractalfract6040194
crossref_primary_10_1016_j_energy_2022_123830
crossref_primary_10_1109_ACCESS_2024_3419561
crossref_primary_10_1016_j_enconman_2020_113048
crossref_primary_10_1016_j_energy_2021_121096
crossref_primary_10_1016_j_enconman_2021_114099
crossref_primary_10_1080_15567036_2020_1769230
crossref_primary_10_1109_ACCESS_2024_3453594
crossref_primary_10_1007_s40435_025_01664_z
crossref_primary_10_1002_er_5527
crossref_primary_10_1007_s42235_024_00481_y
crossref_primary_10_1109_ACCESS_2023_3236023
crossref_primary_10_1016_j_energy_2022_126165
crossref_primary_10_1016_j_compbiomed_2021_104827
crossref_primary_10_1080_10106049_2021_1975832
crossref_primary_10_1016_j_apenergy_2024_122857
crossref_primary_10_1016_j_ijhydene_2021_03_105
crossref_primary_10_3390_su15054625
crossref_primary_10_1016_j_heliyon_2024_e36678
crossref_primary_10_1007_s13369_021_06102_8
crossref_primary_10_1007_s42452_020_04013_1
crossref_primary_10_4018_IJSIR_349907
crossref_primary_10_1038_s41598_025_93162_7
crossref_primary_10_3390_su14074189
crossref_primary_10_1109_TIA_2021_3116549
crossref_primary_10_1177_01423312231160819
crossref_primary_10_1016_j_ijepes_2023_109140
crossref_primary_10_1007_s11831_022_09721_y
crossref_primary_10_1038_s41598_023_46847_w
crossref_primary_10_1016_j_knosys_2023_111134
crossref_primary_10_3389_fenrg_2024_1384649
crossref_primary_10_1002_er_5756
crossref_primary_10_3390_su12198127
crossref_primary_10_1016_j_cma_2024_116781
crossref_primary_10_3390_pr10122723
crossref_primary_10_1007_s11831_025_10363_z
crossref_primary_10_1016_j_enconman_2025_119917
crossref_primary_10_1016_j_rineng_2024_103369
crossref_primary_10_1007_s00521_025_11552_4
crossref_primary_10_3390_su151310590
crossref_primary_10_1016_j_eswa_2021_116355
crossref_primary_10_1002_er_7361
crossref_primary_10_1016_j_egyr_2020_06_002
crossref_primary_10_1016_j_egyr_2022_02_066
Cites_doi 10.1016/j.enconman.2018.08.082
10.1016/j.ijhydene.2012.10.026
10.1016/j.enconman.2018.02.028
10.1016/j.enconman.2018.12.088
10.1049/iet-rpg.2017.0232
10.1002/er.4859
10.1109/TEVC.2005.856205
10.1016/j.ijhydene.2013.12.110
10.1016/j.enconman.2018.01.077
10.1016/j.energy.2015.06.081
10.1002/er.1787
10.1002/er.4215
10.1016/j.egyr.2019.11.013
10.1016/j.ijhydene.2018.06.032
10.1016/j.enconman.2019.02.091
10.1016/j.enconman.2018.03.002
10.1002/er.4809
10.1016/S0378-7753(99)00484-X
10.1007/s11831-019-09353-9
10.1016/j.est.2018.05.014
10.1016/j.ijhydene.2016.03.101
10.1016/j.energy.2015.03.117
10.1016/j.energy.2019.02.106
10.1016/j.enconman.2018.12.057
10.1016/j.ijhydene.2018.11.140
10.1109/TSG.2014.2338398
10.1016/j.renene.2017.12.051
10.1016/j.ijhydene.2013.01.058
10.1016/j.ijhydene.2019.05.022
10.1016/j.enconman.2019.112197
10.1016/j.engappai.2019.103300
10.1016/j.jpowsour.2018.08.082
10.1080/15567036.2011.629277
10.3390/en12101884
10.1016/j.ijhydene.2014.05.052
10.1016/j.energy.2017.11.014
10.1016/j.energy.2018.08.104
10.1002/er.4815
10.1016/j.enconman.2014.08.062
10.1002/fuce.201500190
10.1016/j.enconman.2018.02.025
10.1016/j.renene.2017.04.036
10.1016/j.ijhydene.2016.07.056
10.1016/j.enconman.2019.01.086
10.1016/j.renene.2019.08.046
10.1016/j.energy.2019.06.152
10.1016/j.energy.2018.10.038
10.1016/j.engappai.2013.07.016
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.5244
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 4640
ExternalDocumentID 10_1002_er_5244
ER5244
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
O8X
PHGZM
PHGZT
PQGLB
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c3284-ac0e3e822c9c554761c94b290ebca2fe752baed95514dcd3531cf3de41f18f183
IEDL.DBID DRFUL
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511719700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0363-907X
IngestDate Wed Aug 13 09:27:12 EDT 2025
Tue Nov 18 22:02:32 EST 2025
Sat Nov 29 02:58:44 EST 2025
Wed Jan 22 16:34:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3284-ac0e3e822c9c554761c94b290ebca2fe752baed95514dcd3531cf3de41f18f183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3476-1361
PQID 2386948392
PQPubID 996365
PageCount 12
ParticipantIDs proquest_journals_2386948392
crossref_citationtrail_10_1002_er_5244
crossref_primary_10_1002_er_5244
wiley_primary_10_1002_er_5244_ER5244
PublicationCentury 2000
PublicationDate May 2020
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2018; 164
2018; 163
2017; 42
2018; 143
2015; 6
2018; 160
2018; 162
2019; 5
2018; 405
2019; 12
2000; 86
2014; 27
2918; 18
2019; 201
2011; 35
2020; 146
2012; 59
2017; 111
2019; 185
2018; 43
2016; 16
2019; 182
2012; 34
2019; 183
2019; 166
2014; 88
2019; 187
2018; 174
2013; 38
2019; 42
2018; 119
2019; 44
2019; 43
2019b
2015; 86
2005; 9
2019
2020; 44
2015; 90
2014; 39
2020; 87
2019; 173
2018; 12
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
Askarzadeh A (e_1_2_9_27_1) 2012; 59
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 166
  start-page: 451
  year: 2019
  end-page: 461
  article-title: Optimized parameters of SOFC for steady state and transient simulations using interior search algorithm
  publication-title: Energy
– volume: 18
  start-page: 327
  year: 2918
  end-page: 332
  article-title: System identification black box approach for modeling performance of PEM fuel cell
  publication-title: J Energy Storage
– volume: 9
  start-page: 721
  issue: 6
  year: 2005
  end-page: 735
  article-title: Coevolutionary free lunches
  publication-title: IEEE Trans Evol Comput
– volume: 27
  start-page: 28
  year: 2014
  end-page: 40
  article-title: Parameter optimization of PEMFC model with improved multi‐strategy adaptive differential evolution
  publication-title: Eng Appl Artif Intell
– volume: 39
  start-page: 3837
  issue: 8
  year: 2014
  end-page: 3854
  article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models
  publication-title: Int J Hydrog Energy
– volume: 90
  start-page: 1334
  year: 2015
  end-page: 1341
  article-title: Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm
  publication-title: Energy
– volume: 12
  start-page: 1884
  year: 2019
  article-title: Steady‐state modeling of fuel cells based on atom search optimizer
  publication-title: Energies
– volume: 111
  start-page: 455
  year: 2017
  end-page: 462
  article-title: Effective parameters' identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer
  publication-title: Renew Energy
– volume: 146
  start-page: 1833
  year: 2020
  end-page: 1845
  article-title: A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell
  publication-title: Renew Energy
– volume: 162
  start-page: 159
  year: 2018
  end-page: 175
  article-title: A real‐time capable quasi‐2D proton exchange membrane fuel cell model
  publication-title: Energ Convers Manage
– volume: 405
  start-page: 150
  year: 2018
  end-page: 161
  article-title: Online estimation of the electrochemical impedance of polymer electrolyte membrane fuel cells using broad‐band current excitation
  publication-title: J Power Sources
– volume: 88
  start-page: 554
  year: 2014
  end-page: 564
  article-title: Multiphysical, multidimensional real‐time PEM fuel cell modeling for embedded applications
  publication-title: Energ Convers Manage
– volume: 201
  year: 2019
  article-title: Semi‐empirical PEM fuel cells model using whale optimization algorithm
  publication-title: Energ Convers Manage
– volume: 44
  start-page: 18438
  year: 2019
  end-page: 18449
  article-title: Application of flower pollination algorithm for enhanced proton exchange membrane fuel cell modelling
  publication-title: Int J Hydrog Energy
– volume: 164
  start-page: 639
  year: 2018
  end-page: 654
  article-title: Sensitivity analysis of uncertain parameters based on an improved proton exchange membrane fuel cell analytical model
  publication-title: Energ Convers Manage
– volume: 86
  start-page: 173
  issue: 1–2
  year: 2000
  end-page: 180
  article-title: Development and application of a generalised steady‐state electrochemical model for a PEM fuel cell
  publication-title: J Power Sources
– volume: 44
  start-page: 3075
  issue: 5
  year: 2019
  end-page: 3087
  article-title: Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells
  publication-title: Int J Hydrog Energy
– volume: 185
  start-page: 455
  year: 2019
  end-page: 464
  article-title: A novel intelligent‐based method to control the output voltage of proton exchange membrane fuel cell
  publication-title: Energ Convers Manage
– volume: 44
  start-page: 4
  issue: 1
  year: 2020
  end-page: 25
  article-title: Importance and applications of DOE/optimization methods in PEM fuel cells: a review
  publication-title: Int J Energy Res
– volume: 163
  start-page: 22
  year: 2018
  end-page: 37
  article-title: Optimization of the proton exchange membrane fuel cell hybrid power system for residential buildings
  publication-title: Energ Convers Manage
– volume: 16
  start-page: 640
  issue: 5
  year: 2016
  end-page: 645
  article-title: Parameter estimation for a proton exchange membrane fuel cell model using GRG technique
  publication-title: Fuel Cell
– year: 2019b
– volume: 38
  start-page: 5796
  issue: 14
  year: 2013
  end-page: 5806
  article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell
  publication-title: Int J Hydrog Energy
– volume: 12
  start-page: 9
  issue: 1
  year: 2018
  end-page: 17
  article-title: Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimizer
  publication-title: IET Renew Power Gen
– volume: 183
  start-page: 149
  year: 2019
  end-page: 158
  article-title: Optimization of critical parameters of PEM fuel cell using TLBO‐DE based on Elman neural network
  publication-title: Energ Convers Manage
– volume: 43
  start-page: 8623
  issue: 14
  year: 2019
  end-page: 8632
  article-title: Optimal parameter identification for the proton exchange membrane fuel cell using satin bowerbird optimizer
  publication-title: Int J Energy Res
– volume: 86
  start-page: 139
  year: 2015
  end-page: 151
  article-title: Parameter extraction of different fuel cell models with transferred adaptive differential evolution
  publication-title: Energy
– volume: 38
  start-page: 219
  issue: 1
  year: 2013
  end-page: 228
  article-title: An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells
  publication-title: Int J Hydrog Energy
– volume: 43
  start-page: 14751
  issue: 31
  year: 2018
  end-page: 14761
  article-title: Steady‐state and dynamic models of solid oxide fuel cells based on satin bowerbird optimizer
  publication-title: Int J Hydrog Energy
– volume: 35
  start-page: 1258
  issue: 14
  year: 2011
  end-page: 1265
  article-title: Optimization of PEMFC model parameters with a modified particle swarm optimization
  publication-title: Int J Energy Res
– volume: 173
  start-page: 457
  year: 2019
  end-page: 467
  article-title: Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder‐Mead simplex method
  publication-title: Energy
– volume: 6
  start-page: 158
  issue: 1
  year: 2015
  end-page: 165
  article-title: A fuzzy logic controller for autonomous operation of a voltage source converter‐based distributed generation system
  publication-title: IEEE Trans Smart Grid
– volume: 163
  start-page: 699
  year: 2018
  end-page: 711
  article-title: Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor
  publication-title: Energy
– volume: 59
  start-page: 3473
  issue: 9
  year: 2012
  end-page: 3480
  article-title: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model
  publication-title: IEEE Trans Power Electron
– volume: 42
  start-page: 4697
  issue: 15
  year: 2019
  end-page: 4709
  article-title: Multi‐phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field
  publication-title: Int J Energy Res
– year: 2019
  article-title: Computational methods for optimal planning of hybrid renewable microgrids: a comprehensive review and challenges
  publication-title: Arch Comput Meth Eng
– volume: 39
  start-page: 11165
  issue: 21
  year: 2014
  end-page: 11174
  article-title: A backtracking search algorithm combined with Burger's chaotic map for parameter estimation of PEMFC electrochemical model
  publication-title: Int J Hydrog Energy
– volume: 42
  start-page: 1499
  issue: 2
  year: 2017
  end-page: 1509
  article-title: Identification of a PEMFC fractional order model
  publication-title: Int J Hydrog Energy
– volume: 160
  start-page: 486
  year: 2018
  end-page: 494
  article-title: Investigation of micro‐combined heat and power application of PEM fuel cell systems
  publication-title: Energ Convers Manage
– volume: 87
  year: 2020
  article-title: Manta ray foraging optimization: an effective bio‐inspired optimizer for engineering applications
  publication-title: Eng Appl Artif Intell
– volume: 187
  start-page: 565
  year: 2019
  end-page: 577
  article-title: A non‐iterative approach for maximum power extraction from PEM fuel cell using resistance estimation
  publication-title: Energ Convers Manage
– volume: 42
  start-page: 1366
  issue: 2
  year: 2017
  end-page: 1374
  article-title: Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production
  publication-title: Int J Hydrog Energy
– volume: 183
  start-page: 912
  year: 2019
  end-page: 925
  article-title: Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms
  publication-title: Energy
– volume: 174
  start-page: 913
  year: 2018
  end-page: 921
  article-title: Fast and accurate parameter extraction for different types of fuel cells with decomposition and nature‐inspired optimization method
  publication-title: Energ Convers Manage
– volume: 182
  start-page: 1
  year: 2019
  end-page: 8
  article-title: Shark smell optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model
  publication-title: Energ Convers Manage
– volume: 5
  start-page: 1616
  year: 2019
  end-page: 1625
  article-title: Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm
  publication-title: Energy Rep
– volume: 43
  start-page: 8136
  issue: 14
  year: 2019
  end-page: 8147
  article-title: Effective methodology based on neural network optimizer for extracting model parameters of PEM fuel cells
  publication-title: Int J Energy Res
– volume: 34
  start-page: 1591
  issue: 17
  year: 2012
  end-page: 1598
  article-title: The performance of serially and parallelly connected microbial fuel cells
  publication-title: Energy Sources A
– volume: 143
  start-page: 634
  year: 2018
  end-page: 644
  article-title: Multi‐verse optimizer for identifying the optimal parameters of PEMFC model
  publication-title: Energy
– volume: 119
  start-page: 641
  year: 2018
  end-page: 648
  article-title: Extracting optimal parameters of PEM fuel cells using salp swarm optimizer
  publication-title: Renew Energy
– ident: e_1_2_9_9_1
  doi: 10.1016/j.enconman.2018.08.082
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ijhydene.2012.10.026
– ident: e_1_2_9_21_1
  doi: 10.1016/j.enconman.2018.02.028
– ident: e_1_2_9_16_1
  doi: 10.1016/j.enconman.2018.12.088
– volume: 59
  start-page: 3473
  issue: 9
  year: 2012
  ident: e_1_2_9_27_1
  article-title: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model
  publication-title: IEEE Trans Power Electron
– ident: e_1_2_9_43_1
  doi: 10.1049/iet-rpg.2017.0232
– ident: e_1_2_9_30_1
  doi: 10.1002/er.4859
– ident: e_1_2_9_46_1
  doi: 10.1109/TEVC.2005.856205
– ident: e_1_2_9_40_1
  doi: 10.1016/j.ijhydene.2013.12.110
– ident: e_1_2_9_13_1
  doi: 10.1016/j.enconman.2018.01.077
– ident: e_1_2_9_32_1
  doi: 10.1016/j.energy.2015.06.081
– ident: e_1_2_9_41_1
  doi: 10.1002/er.1787
– ident: e_1_2_9_10_1
  doi: 10.1002/er.4215
– ident: e_1_2_9_51_1
  doi: 10.1016/j.egyr.2019.11.013
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ijhydene.2018.06.032
– ident: e_1_2_9_17_1
  doi: 10.1016/j.enconman.2019.02.091
– ident: e_1_2_9_24_1
  doi: 10.1016/j.enconman.2018.03.002
– ident: e_1_2_9_7_1
  doi: 10.1002/er.4809
– ident: e_1_2_9_49_1
  doi: 10.1016/S0378-7753(99)00484-X
– ident: e_1_2_9_2_1
  doi: 10.1007/s11831-019-09353-9
– ident: e_1_2_9_25_1
  doi: 10.1016/j.est.2018.05.014
– ident: e_1_2_9_23_1
  doi: 10.1016/j.ijhydene.2016.03.101
– ident: e_1_2_9_34_1
  doi: 10.1016/j.energy.2015.03.117
– ident: e_1_2_9_28_1
  doi: 10.1016/j.energy.2019.02.106
– ident: e_1_2_9_26_1
  doi: 10.1016/j.enconman.2018.12.057
– ident: e_1_2_9_35_1
  doi: 10.1016/j.ijhydene.2018.11.140
– ident: e_1_2_9_3_1
  doi: 10.1109/TSG.2014.2338398
– ident: e_1_2_9_29_1
  doi: 10.1016/j.renene.2017.12.051
– ident: e_1_2_9_36_1
  doi: 10.1016/j.ijhydene.2013.01.058
– ident: e_1_2_9_45_1
  doi: 10.1016/j.ijhydene.2019.05.022
– ident: e_1_2_9_6_1
  doi: 10.1016/j.enconman.2019.112197
– ident: e_1_2_9_47_1
  doi: 10.1016/j.engappai.2019.103300
– ident: e_1_2_9_19_1
  doi: 10.1016/j.jpowsour.2018.08.082
– ident: e_1_2_9_48_1
  doi: 10.1080/15567036.2011.629277
– ident: e_1_2_9_11_1
  doi: 10.3390/en12101884
– ident: e_1_2_9_39_1
  doi: 10.1016/j.ijhydene.2014.05.052
– ident: e_1_2_9_42_1
  doi: 10.1016/j.energy.2017.11.014
– ident: e_1_2_9_12_1
  doi: 10.1016/j.energy.2018.08.104
– ident: e_1_2_9_15_1
  doi: 10.1002/er.4815
– ident: e_1_2_9_18_1
  doi: 10.1016/j.enconman.2014.08.062
– ident: e_1_2_9_22_1
  doi: 10.1002/fuce.201500190
– ident: e_1_2_9_14_1
  doi: 10.1016/j.enconman.2018.02.025
– ident: e_1_2_9_37_1
  doi: 10.1016/j.renene.2017.04.036
– ident: e_1_2_9_20_1
  doi: 10.1016/j.ijhydene.2016.07.056
– ident: e_1_2_9_4_1
  doi: 10.1016/j.enconman.2019.01.086
– ident: e_1_2_9_44_1
  doi: 10.1016/j.renene.2019.08.046
– ident: e_1_2_9_38_1
  doi: 10.1016/j.energy.2019.06.152
– ident: e_1_2_9_50_1
– ident: e_1_2_9_5_1
  doi: 10.1016/j.energy.2018.10.038
– ident: e_1_2_9_33_1
  doi: 10.1016/j.engappai.2013.07.016
SSID ssj0009917
Score 2.588505
Snippet Summary In this article, a recently developed bio‐inspired based manta rays foraging optimizer (MRFO) is attempted for reliable and accurate extraction of the...
In this article, a recently developed bio‐inspired based manta rays foraging optimizer (MRFO) is attempted for reliable and accurate extraction of the model...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4629
SubjectTerms Algorithms
Computation
Foraging
Marine fishes
Mathematical models
modelling and simulations
Optimization
optimization methods
Parameter estimation
Parameter uncertainty
Parameters
parameters extraction
PEMFCs
Performance assessment
Proton exchange membrane fuel cells
Stacks
Title Parameters extraction of PEMFC's model using manta rays foraging optimizer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.5244
https://www.proquest.com/docview/2386948392
Volume 44
WOSCitedRecordID wos000511719700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-114X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009917
  issn: 0363-907X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32K1yh6KnmKbTbLpHqW2iNRSioXewmazKwXbSlIF_fXObtKHiCAIgVxmQ5idx7fJzDcAtVh4iDKkaxwpcXymXCdmWjvaC_3EF5iEAtso3A17veZoxPtro75yfojlBzfjGTZeGwcXcVZfkYaq9CbA3LQJZYpWG5SgfDfoDLsrxl1ux-3aH5V4AhzlHbNmcb1Y-j0VrfDlOkq1aaaz948X3IfdAluS29wYDmBDTQ9hZ41x8Age-sJUYxlKTYJhOc3bGshMk377sdO6zogdjUNMOfwzmaDaBUnFR0YQ29p5RmSGMWYy_lTpMQw77afWvVOMU3Ckh0nIEbKhPIWAQHKJICJkruR-THnD1ENRrcKAxkIl3GCoRCYeeqfUXqJ8V7tNvLwTKE1nU3UKxGWaJYmgghnGQT-MMVCoGJ8WUCYZDytwtdBsJAuucTPy4iXKWZJppNLIKKcCZCn4mtNr_BSpLrYmKvwrixBoMO4bcFeBmt2E35ZH7YG5nf1N7By2qTlQ24rGKpTm6Zu6gC35Ph9n6WVhYl997tPe
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSwJBEB9Kg-qh78iy2gepp0vvwz3vMUyxUhFR8O3Y29sLITXuLKi_vpm9M40IguDgXnaOY3c-frs78xuAUiBsRBnSJEMKDYcr0wh4FBmR7TqhIzAIVXWhcNvtdmujkdfLsiqpFiblh_g6cCPL0P6aDJwOpMtL1lAV31QxOK1D3kElQu3O3_Wbw_aSctfT_Xb1TSVuAUdpySwJlzPR77FoCTBXYaqOM83d__zhHuxk6JLdpuqwD2tqegDbK5yDh_DQE5SPRaSaDB1znBY2sFnEeo1Os36dMN0ch1FC_BOb4MQLFov3hCG61R2N2Ay9zGT8oeIjGDYbg3rLyBoqGNLGMGQIWVG2QkggPYkwwuWm9JzA8iqUEWVFyq1agVChRygqlKGN9ikjO1SOGZk1fOxjyE1nU3UCzOQRD0NhCU6cg44boKtQAX6tanHJPbcAV4up9WXGNk5NL579lCfZ8lXs0-QUgH0NfEkJNn4OKS7Wxs8sLPERanDPIXhXgJJehd_E_UafXqd_G3YJm61Bp-2377uPZ7Bl0fZa5zcWITePX9U5bMi3-TiJLzJ9-wQ20dfO
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60FdEHb7FadR-KPsU2RzfNo7QNHrWUYqFvYbOHFOxBWgX99e5s0kNEEIRAXmZCmN2Z-TaZ-QagFDNXowxuoyMJy6PStmKqlKVc3xMe00moahqFW367Xev3g05WVYm9MCk_xOKDG3qGidfo4HIiVHnJGiqTm6pOTuuQ93CETA7yjW7Yay0pdwMzb9f8qdRHwH7aMovK5Uz1ey5aAsxVmGryTLj7nzfcg50MXZLbdDvsw5ocHcD2CufgITx0GNZjIakm0YE5SRsbyFiRTvMprF9PiRmOQ7Ag_oUMteEZSdjHlGh0ayYakbGOMsPBp0yOoBc2n-t3VjZQweKuTkMW4xXpSg0JeMA1jPCpzQMvdoIKVkQ5SvpVJ2ZSBIiiBBeu9k-uXCE9W9k1fbnHkBuNR_IEiE0VFYI5jCLnoOfHOlTIWD-t6lBOA78AV3PTRjxjG8ehF69RypPsRDKJ0DgFIAvBSUqw8VOkOF-bKPOwaaShBg08hHcFKJlV-E09anbxdvo3sUvY7DTCqHXffjyDLQdP16a8sQi5WfImz2GDv88G0-Qi225f_MvXSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameters+extraction+of+PEMFC%27s+model+using+manta+rays+foraging+optimizer&rft.jtitle=International+journal+of+energy+research&rft.au=Selem%2C+Sameh+I.&rft.au=Hasanien%2C+Hany+M.&rft.au=El%E2%80%90Fergany%2C+Attia+A.&rft.date=2020-05-01&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=44&rft.issue=6&rft.spage=4629&rft.epage=4640&rft_id=info:doi/10.1002%2Fer.5244&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_er_5244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon