A compromise programming method using multibounds formulation and dual approach for multicriteria structural optimization

To enhance the reliability and efficiency of the multicriteria optimization procedure, a compromise programming method using multibounds formulation (MBF) is proposed in this paper. This method can be used either to obtain the Pareto optimum set or to find the ‘best’ Pareto optimum solution in the s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in engineering Ročník 58; číslo 4; s. 661 - 678
Hlavní autor: Zhang, W. H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 28.09.2003
Témata:
ISSN:0029-5981, 1097-0207
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To enhance the reliability and efficiency of the multicriteria optimization procedure, a compromise programming method using multibounds formulation (MBF) is proposed in this paper. This method can be used either to obtain the Pareto optimum set or to find the ‘best’ Pareto optimum solution in the sense of having the minimum distance to the utopia point. By introducing a set of artificial design variables, it is shown that a simplified and easy‐to‐use formulation can be established for practical applications. Particularly, this formulation is well adapted to the efficient dual solution approach due to the convexity of objective function. Theoretically, based on the Kuhn–Tucker optimality conditions, demonstrations show that the new formulation is equivalent to its original form and thus retains the basic properties of the latter. Numerical examples will be solved to show the capacity of this method. Copyright © 2003 John Wiley & Sons, Ltd.
AbstractList To enhance the reliability and efficiency of the multicriteria optimization procedure, a compromise programming method using multibounds formulation (MBF) is proposed in this paper. This method can be used either to obtain the Pareto optimum set or to find the ‘best’ Pareto optimum solution in the sense of having the minimum distance to the utopia point. By introducing a set of artificial design variables, it is shown that a simplified and easy‐to‐use formulation can be established for practical applications. Particularly, this formulation is well adapted to the efficient dual solution approach due to the convexity of objective function. Theoretically, based on the Kuhn–Tucker optimality conditions, demonstrations show that the new formulation is equivalent to its original form and thus retains the basic properties of the latter. Numerical examples will be solved to show the capacity of this method. Copyright © 2003 John Wiley & Sons, Ltd.
To enhance the reliability and efficiency of the multicriteria optimization procedure, a compromise programming method using multibounds formulation (MBF) is proposed in this paper. This method can be used either to obtain the Pareto optimum set or to find the 'best' Pareto optimum solution in the sense of having the minimum distance to the Utopia point. By introducing a set of artificial design variables, it is shown that a simplified and easy-to-use formulation can be established for practical applications. Particularly, this formulation is well adapted to the efficient dual solution approach due to the convexity of objective function. Theoretically, based on the Kuhn-Tucker optimality conditions, demonstrations show that the new formulation is equivalent to its original form and thus retains the basic properties of the latter. Numerical examples will be solved to show the capacity of this method.
Author Zhang, W. H.
Author_xml – sequence: 1
  givenname: W. H.
  surname: Zhang
  fullname: Zhang, W. H.
  email: zhangwh@nwpu.edu.cn
  organization: Sino-French Laboratory of Concurrent Engineering, Department of Aircraft Manufacturing Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China
BookMark eNp1kEtPwzAQhC1UJFpA_AWf4IBS7Dxs51iVUpB4HMrrZjmO0xqSuNiOoPx6TIuQQHBajebb0e4MQK81rQLgAKMhRig-aRs1ZCTdAn2MchqhGNEe6Acnj7Kc4R0wcO4JIYwzlPTBagSlaZbWNNopGObciqbR7Rw2yi9MCTu3Fl3tdWG6tnSwMjZI4bVpoWhLWHaihmIZdoVcfLobWlrtldUCOm876TsbKLP0utHv6909sF2J2qn9r7kL7s4mt-Pz6PJmejEeXUYyiVkasSwp8pgwogguiMxQmlElaVpJySjBVCZliqRMRS7zrMhKVgpWIaxYXgiKijzZBYeb3HDgS6ec5-FVqepatMp0jseU4YTEOIBHG1Ba45xVFV9a3Qi74hjxz2p5qJaHagMZ_SKl9uunvBW6_oM_3vCvular_2L59dXkR7p2Xr1908I-c0ITmvGH6yk_vR8TPJs-8lnyAXR3noM
CitedBy_id crossref_primary_10_1080_15568318_2020_1773975
crossref_primary_10_1177_1748302619870424
crossref_primary_10_1007_s00704_021_03582_4
crossref_primary_10_1016_j_cad_2012_01_003
crossref_primary_10_1016_j_finel_2016_07_002
crossref_primary_10_1007_s10109_010_0124_6
crossref_primary_10_1007_s13296_022_00597_z
crossref_primary_10_1080_13658810701492365
crossref_primary_10_1007_s00158_011_0622_2
crossref_primary_10_1007_s00477_022_02172_8
crossref_primary_10_1051_meca_2025002
Cites_doi 10.1007/BF00934871
10.1115/1.2829440
10.1007/s00158-002-0185-3
10.1080/03052159608941404
10.1016/S0045-7949(01)00142-0
10.1002/cnm.1630010613
10.1007/BF00933599
10.1002/nme.229
10.1002/nme.1620240207
10.1007/978-1-4899-3734-6
10.1007/BF01743804
ContentType Journal Article
Copyright Copyright © 2003 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2003 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1002/nme.864
DatabaseName Istex
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 678
ExternalDocumentID 10_1002_nme_864
NME864
ark_67375_WNG_DVC61SGX_S
Genre article
GrantInformation_xml – fundername: Aeronautical Foundation
  funderid: 00B53005
– fundername: National Natural Science Foundation
  funderid: 10172072
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TN5
UB1
V2E
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~A~
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c3284-853b92686e61b6c50457ec74fcc87617c3d40cc4a9c95b5d8da8f01e89ba70b93
IEDL.DBID DRFUL
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000185360000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Sun Nov 09 10:49:41 EST 2025
Tue Nov 18 21:52:32 EST 2025
Sat Nov 29 01:43:47 EST 2025
Wed Aug 20 07:24:49 EDT 2025
Tue Nov 11 03:33:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3284-853b92686e61b6c50457ec74fcc87617c3d40cc4a9c95b5d8da8f01e89ba70b93
Notes istex:015DE6DF204BFA99DF798BBDD4342DCEDE06729C
National Natural Science Foundation - No. 10172072
Aeronautical Foundation - No. 00B53005
ArticleID:NME864
ark:/67375/WNG-DVC61SGX-S
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27813621
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_27813621
crossref_primary_10_1002_nme_864
crossref_citationtrail_10_1002_nme_864
wiley_primary_10_1002_nme_864_NME864
istex_primary_ark_67375_WNG_DVC61SGX_S
PublicationCentury 2000
PublicationDate 2003-09-28
28 September 2003
20030928
PublicationDateYYYYMMDD 2003-09-28
PublicationDate_xml – month: 09
  year: 2003
  text: 2003-09-28
  day: 28
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2003
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Yu PL, Leitmann G. Compromise solutions, dominations structures, and Salukvadze's solution. Journal of Optimization Theory and Applications 1974; 13:362-378.
Svanberg K. Method of moving asymptotes-a new method for structural optimization. International Journal for Numerical Methods in Engineering 1987; 24(2):359-373.
Athan TW, Papalambros Y. A note on weighted criteria methods for compromise solutions in multi-objective optimization. Engineering Optimization 1996; 27:155-176.
Zhang WH, Yang HC. A study of the weighting method for a certain type of multicriteria structural optimization problems. Computers and Structures 2001; 79:2741-2749.
Gearhart WB. Compromise solutions and estimation of the non-inferior set. Journal of Optimization Theory and Applications 1979; 28:29-47.
Chen W, Wiecek MM, Zhang J. Quality utility-a compromise programming approach to robust design. Journal of Mechanical Design (ASME) 1999; 121:179-187.
Fleury C. First and second order convex approximation strategies in structural optimization. Structural Optimization 1989; 1:3-10.
Koski J. Defectiveness of weighting method in multicriterion optimization of structures. Communications in Applied Numerical Methods 1985; 1:333-337.
Zhang WH, Domaszewski M, Fleury C. An improved weighting method with multibounds formulation and convex programming for multicriteria structural optimization. International Journal for Numerical Methods in Engineering 2001; 52(9):889-902.
Zhang WH, Yang HC. Efficient gradient calculation of the Pareto optimal curve in multicriteria optimization. Structural and Multidisciplinary Optimization 2002; 23(4):311-319.
Stadler W. Multicriteria Optimization in Engineering and in the Sciences. Plenum Press: New York, 1988.
1979; 28
1987; 24
1999; 121
1973
1974; 13
1985; 1
1989; 1
1996; 27
2001; 79
2002; 23
2001; 52
1988
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_10_2
e_1_2_1_13_2
Zeleny M (e_1_2_1_2_2) 1973
e_1_2_1_8_2
e_1_2_1_9_2
References_xml – reference: Zhang WH, Yang HC. Efficient gradient calculation of the Pareto optimal curve in multicriteria optimization. Structural and Multidisciplinary Optimization 2002; 23(4):311-319.
– reference: Chen W, Wiecek MM, Zhang J. Quality utility-a compromise programming approach to robust design. Journal of Mechanical Design (ASME) 1999; 121:179-187.
– reference: Fleury C. First and second order convex approximation strategies in structural optimization. Structural Optimization 1989; 1:3-10.
– reference: Gearhart WB. Compromise solutions and estimation of the non-inferior set. Journal of Optimization Theory and Applications 1979; 28:29-47.
– reference: Koski J. Defectiveness of weighting method in multicriterion optimization of structures. Communications in Applied Numerical Methods 1985; 1:333-337.
– reference: Yu PL, Leitmann G. Compromise solutions, dominations structures, and Salukvadze's solution. Journal of Optimization Theory and Applications 1974; 13:362-378.
– reference: Stadler W. Multicriteria Optimization in Engineering and in the Sciences. Plenum Press: New York, 1988.
– reference: Zhang WH, Domaszewski M, Fleury C. An improved weighting method with multibounds formulation and convex programming for multicriteria structural optimization. International Journal for Numerical Methods in Engineering 2001; 52(9):889-902.
– reference: Svanberg K. Method of moving asymptotes-a new method for structural optimization. International Journal for Numerical Methods in Engineering 1987; 24(2):359-373.
– reference: Zhang WH, Yang HC. A study of the weighting method for a certain type of multicriteria structural optimization problems. Computers and Structures 2001; 79:2741-2749.
– reference: Athan TW, Papalambros Y. A note on weighted criteria methods for compromise solutions in multi-objective optimization. Engineering Optimization 1996; 27:155-176.
– start-page: 262
  year: 1973
  end-page: 301
– volume: 52
  start-page: 889
  issue: 9
  year: 2001
  end-page: 902
  article-title: An improved weighting method with multibounds formulation and convex programming for multicriteria structural optimization
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 23
  start-page: 311
  issue: 4
  year: 2002
  end-page: 319
  article-title: Efficient gradient calculation of the Pareto optimal curve in multicriteria optimization
  publication-title: Structural and Multidisciplinary Optimization
– volume: 13
  start-page: 362
  year: 1974
  end-page: 378
  article-title: Compromise solutions, dominations structures, and Salukvadze's solution
  publication-title: Journal of Optimization Theory and Applications
– volume: 27
  start-page: 155
  year: 1996
  end-page: 176
  article-title: A note on weighted criteria methods for compromise solutions in multi‐objective optimization
  publication-title: Engineering Optimization
– volume: 121
  start-page: 179
  year: 1999
  end-page: 187
  article-title: Quality utility—a compromise programming approach to robust design
  publication-title: Journal of Mechanical Design
– volume: 1
  start-page: 3
  year: 1989
  end-page: 10
  article-title: First and second order convex approximation strategies in structural optimization
  publication-title: Structural Optimization
– volume: 1
  start-page: 333
  year: 1985
  end-page: 337
  article-title: Defectiveness of weighting method in multicriterion optimization of structures
  publication-title: Communications in Applied Numerical Methods
– volume: 24
  start-page: 359
  issue: 2
  year: 1987
  end-page: 373
  article-title: Method of moving asymptotes—a new method for structural optimization
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1988
– volume: 28
  start-page: 29
  year: 1979
  end-page: 47
  article-title: Compromise solutions and estimation of the non‐inferior set
  publication-title: Journal of Optimization Theory and Applications
– volume: 79
  start-page: 2741
  year: 2001
  end-page: 2749
  article-title: A study of the weighting method for a certain type of multicriteria structural optimization problems
  publication-title: Computers and Structures
– ident: e_1_2_1_4_2
  doi: 10.1007/BF00934871
– ident: e_1_2_1_5_2
  doi: 10.1115/1.2829440
– start-page: 262
  volume-title: Multiple Criteria Decision Making
  year: 1973
  ident: e_1_2_1_2_2
– ident: e_1_2_1_13_2
  doi: 10.1007/s00158-002-0185-3
– ident: e_1_2_1_6_2
  doi: 10.1080/03052159608941404
– ident: e_1_2_1_12_2
  doi: 10.1016/S0045-7949(01)00142-0
– ident: e_1_2_1_8_2
  doi: 10.1002/cnm.1630010613
– ident: e_1_2_1_3_2
  doi: 10.1007/BF00933599
– ident: e_1_2_1_7_2
  doi: 10.1002/nme.229
– ident: e_1_2_1_11_2
  doi: 10.1002/nme.1620240207
– ident: e_1_2_1_9_2
  doi: 10.1007/978-1-4899-3734-6
– ident: e_1_2_1_10_2
  doi: 10.1007/BF01743804
SSID ssj0011503
Score 1.760142
Snippet To enhance the reliability and efficiency of the multicriteria optimization procedure, a compromise programming method using multibounds formulation (MBF) is...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 661
SubjectTerms compromise programming
dual approach
multicriteria optimization
Title A compromise programming method using multibounds formulation and dual approach for multicriteria structural optimization
URI https://api.istex.fr/ark:/67375/WNG-DVC61SGX-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.864
https://www.proquest.com/docview/27813621
Volume 58
WOSCitedRecordID wos000185360000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9wwDLe2uz2MB9jY0A7YlgfEW0c_8_GIgIMHOE1jbPcWJWkqIXY9dN0Q_PfYba46NE2axFMV1VEr27GdxP4ZYE-VXNo0K6Iizssod7yKjCvjiNprV7hfsaJqC4XPxWQip1P1daXVV4cP0R-40cpo7TUtcGObgxXQ0Jn_Inn-EoYpam0xgOHxt_HVeX-FgJFOtszvKJRMuopZmnwQpj5xRUPi6v2TOHM1Wm3dzXjjGT_6BtZDjMkOO6V4Cy98vQkbId5kYTU3m7C2AkaIo4sewbV5Bw-HjLLNF3PUA89CFtcMCVnXc5pRwjwOKB_RUmumhlH4G5qBMVOXjKq82BKznN521GimCB_asA66lmA_2BwN1yxUhL6Hq_HJ96OzKLRpiFyGzi1Ch29VyiX3PLHcodAL4Z3IK-fQ1CbCZWUeO5cb5VRhi1KWRlZx4qWyRsRWZVswqOe1_wBMpNzRKUgWp1WuktTgZsiiAVaVUzL3fgT7S4lpFzDMqZXGL92hL6cama2R2SNgPeFtB9vxN8l-K_L-vVncUJabKPTPyak-_nHEk8vTqb4cweelTmjkOV2omNrP_zQ6FTLBACAZwV6rAP_6lJ5cnOBj-__IduB1mzFIV19yFwYoDP8RXrm739fN4lNQ80f7UAVe
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdghwQ8MBhDO76Wh2lvZf1I0-Rx2nYb4q5CbIN7i5I0lRBcD10Hgv8eu81VNyEkJJ6qqI5a2Y7tJPbPAAeqEtKmWR7lMa8i7kQdGVfFEbXXrnG_You6KxSeFmUp53P1PmRVUi1Mjw8xHLjRyujsNS1wOpA-2kANXfg3UvC7MOKoRKjdo9MPk-vpcIeAoU62TvDIlUz6klmafBSm3vJFI2Lrz1uB5ma42vmbyfb__OljeBSiTHbcq8UTuOObHdgOEScL67ndgYcbcIQ4mg0Yru1T-HXMKN98tURN8CzkcS2QkPVdpxmlzOOAMhItNWdqGQXAoR0YM03FqM6LrVHL6W1PjYaKEKIN68FrCfiDLdF0LUJN6C5cT86uTi6i0Kghchm6twhdvlWpkMKLxAqHYs8L7wpeO4fGNilcVvHYOW6UU7nNK1kZWceJl8qaIrYqewZbzbLxe8CKVDg6B8nitOYqSQ1uhyyaYFU7Jbn3Yzhci0y7gGJOzTS-6h5_OdXIbI3MHgMbCL_1wB1_khx2Mh_em9UXynMrcv2pPNenH09Ecnk-15dj2F8rhUae05WKafzye6vTQiYYAiRjOOg04G-f0uXsDB_P_41sH-5fXM2mevq2fPcCHnT5g3QRJl_CFgrGv4J77sfN53b1Ouj8b4rHCU4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfgDiF4YDCGOL6Wh2lvZf1I0-Rx2u0G4lZNjMG9RUmaSgiuN10BwX-P3eaqmxASEk9VVEetbMd2EvtngANVCWnTLI_ymFcRd6KOjKviiNpr17hfsUXdFQrPi7KUi4W6CFmVVAvT40MMB260Mjp7TQvcX1f10RZq6NK_loLfhjGnFjIjGE_fz67mwx0ChjrZJsEjVzLpS2Zp8lGYesMXjYmtP28EmtvhaudvZjv_86cP4UGIMtlxrxaP4JZvdmEnRJwsrOd2F-5vwRHi6HzAcG0fw69jRvnm6xVqgmchj2uJhKzvOs0oZR4HlJFoqTlTyygADu3AmGkqRnVebINaTm97ajRUhBBtWA9eS8AfbIWmaxlqQvfganb64eRNFBo1RC5D9xahy7cqFVJ4kVjhUOx54V3Ba-fQ2CaFyyoeO8eNciq3eSUrI-s48VJZU8RWZU9g1Kwa_xRYkQpH5yBZnNZcJanB7ZBFE6xqpyT3fgKHG5FpF1DMqZnGV93jL6cama2R2RNgA-F1D9zxJ8lhJ_PhvVl_oTy3ItefyjM9_Xgiksuzhb6cwP5GKTTynK5UTONX31udFjLBECCZwEGnAX_7lC7PT_Hx7N_I9uHuxXSm52_Ld8_hXpc-SPdg8gWMUC7-JdxxP759btevgsr_BgrpCMk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+compromise+programming+method+using+multibounds+formulation+and+dual+approach+for+multicriteria+structural+optimization&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Zhang%2C+W.+H.&rft.date=2003-09-28&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=58&rft.issue=4&rft.spage=661&rft.epage=678&rft_id=info:doi/10.1002%2Fnme.864&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_864
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon