A Deep Clustering Algorithm based on Gaussian Mixture Model

Clustering autonomously learns the implicit cluster structure in the original data without prior knowledge. The effect of ordinary clustering algorithms is not good to cluster high-dimensional data. In this paper, we propose a deep clustering algorithm based on Gaussian mixture model, which combines...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 1302; číslo 3; s. 32012 - 32020
Hlavní autoři: Lin, Xianghong, Yang, Xiaofei, Li, Ying
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.08.2019
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Clustering autonomously learns the implicit cluster structure in the original data without prior knowledge. The effect of ordinary clustering algorithms is not good to cluster high-dimensional data. In this paper, we propose a deep clustering algorithm based on Gaussian mixture model, which combines two models of stacked auto-encoder and Gaussian mixture model. This algorithm uses the expectation maximization algorithm of reducing dimension data feature to train Gaussian mixture and updates the data cluster so that the data is clustered in the feature space. The experimental results demonstrate that the proposed algorithm improves the clustering accuracy, and verifies the effectiveness of the algorithm.
AbstractList Clustering autonomously learns the implicit cluster structure in the original data without prior knowledge. The effect of ordinary clustering algorithms is not good to cluster high-dimensional data. In this paper, we propose a deep clustering algorithm based on Gaussian mixture model, which combines two models of stacked auto-encoder and Gaussian mixture model. This algorithm uses the expectation maximization algorithm of reducing dimension data feature to train Gaussian mixture and updates the data cluster so that the data is clustered in the feature space. The experimental results demonstrate that the proposed algorithm improves the clustering accuracy, and verifies the effectiveness of the algorithm.
Author Yang, Xiaofei
Lin, Xianghong
Li, Ying
Author_xml – sequence: 1
  givenname: Xianghong
  surname: Lin
  fullname: Lin, Xianghong
  email: linxh@nwnu.edu.cn
  organization: College of Computer Science and Engineering, Northwest Normal University , China
– sequence: 2
  givenname: Xiaofei
  surname: Yang
  fullname: Yang, Xiaofei
  organization: College of Computer Science and Engineering, Northwest Normal University , China
– sequence: 3
  givenname: Ying
  surname: Li
  fullname: Li, Ying
  organization: College of Computer Science and Engineering, Northwest Normal University , China
BookMark eNqNkF1LwzAUhoNMcJv-BgPeCbX5aNoU8WJUncqGgnoduiSdGV1Tkxb039tSmSiCnpscyPPmDc8EjCpbaQCOMTrDiPMQJxEJYpbGIaaIhDRElCBM9sB4dzPa7ZwfgIn3G4RoN8kYnM_gpdY1zMrWN9qZag1n5do607xs4Sr3WkFbwXneem_yCi7NW9M6DZdW6fIQ7Bd56fXR5zkFz9dXT9lNsLif32azRSAp4SRIGZcsVglWiOE0lpwUNFISrVQUaaVwERGZppJHUulIFYToiBcxS4jO0UrLlE7ByfBu7exrq30jNrZ1VVcpCIuTFLOE9dTFQElnvXe6ENI0eWNs1bjclAIj0fsSvQnRWxG9L0HF4KvLJz_ytTPb3L3_I3k6JI2tv75295A9fgdFrYoOpr_Af1V8ANa5i4E
CitedBy_id crossref_primary_10_1038_s41598_024_68974_8
crossref_primary_10_2118_212833_PA
crossref_primary_10_1186_s40537_024_01015_3
crossref_primary_10_1016_j_procs_2025_03_032
Cites_doi 10.1038/nature14539
10.1145/331499.331504
10.1109/CSE-EUC.2017.215
10.1109/TIP.2010.2049235
10.1561/2200000006
10.1198/016214502760047131
10.1162/neco.2006.18.7.1527
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1302/3/032012
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate A Deep Clustering Algorithm based on Gaussian Mixture Model
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1302_3_032012
JPCS_1302_3_032012
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3282-958c56d71d05196c82f34dc0bd44edd1f42c99c84cde4df22e48f6572ea0bec93
IEDL.DBID PIMPY
ISSN 1742-6588
IngestDate Fri Jul 25 07:54:49 EDT 2025
Sat Nov 29 01:47:25 EST 2025
Tue Nov 18 22:35:40 EST 2025
Wed Aug 21 03:40:55 EDT 2024
Fri Jan 08 09:41:16 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3282-958c56d71d05196c82f34dc0bd44edd1f42c99c84cde4df22e48f6572ea0bec93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/publiccontent/docview/2567915759?pq-origsite=%requestingapplication%
PQID 2567915759
PQPubID 4998668
PageCount 9
ParticipantIDs crossref_primary_10_1088_1742_6596_1302_3_032012
crossref_citationtrail_10_1088_1742_6596_1302_3_032012
proquest_journals_2567915759
iop_journals_10_1088_1742_6596_1302_3_032012
PublicationCentury 2000
PublicationDate 20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 20190801
  day: 01
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Jain (JPCS_1302_3_032012bib4) 1999; 31
Bengio (JPCS_1302_3_032012bib9) 2007
Lecun (JPCS_1302_3_032012bib3) 2015; 521
Gheisari (JPCS_1302_3_032012bib2) 2017
Hinton (JPCS_1302_3_032012bib11) 2006; 18
Fraley (JPCS_1302_3_032012bib15) 2002; 97
Xie (JPCS_1302_3_032012bib6) 2015
Bengio (JPCS_1302_3_032012bib8) 2009; 2
Mclachlan (JPCS_1302_3_032012bib13) 2004
Bishop (JPCS_1302_3_032012bib12) 1995; 12
Yang (JPCS_1302_3_032012bib16) 2010; 19
Torre (JPCS_1302_3_032012bib5) 2006
Larochelle (JPCS_1302_3_032012bib10) 2009; 10
Ngiam (JPCS_1302_3_032012bib7) 2011
Yi-Ou (JPCS_1302_3_032012bib1) 2017; 46
Dilokthanakul (JPCS_1302_3_032012bib14) 2016
References_xml – volume: 521
  start-page: 436
  year: 2015
  ident: JPCS_1302_3_032012bib3
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2006
  ident: JPCS_1302_3_032012bib5
  article-title: Discriminative cluster analysis
– year: 2016
  ident: JPCS_1302_3_032012bib14
  article-title: Deep unsupervised clustering with gaussian mixture variational autoencoders J
– year: 2015
  ident: JPCS_1302_3_032012bib6
  article-title: Unsupervised deep embedding for clustering analysis
– volume: 31
  start-page: 264
  year: 1999
  ident: JPCS_1302_3_032012bib4
  article-title: Data clustering: a review
  publication-title: Acm Computing Surveys
  doi: 10.1145/331499.331504
– start-page: 153
  year: 2007
  ident: JPCS_1302_3_032012bib9
  article-title: Greedy layer-wise training of deep networks
– year: 2004
  ident: JPCS_1302_3_032012bib13
– start-page: 689
  year: 2011
  ident: JPCS_1302_3_032012bib7
  article-title: Multimodal deep learning
– volume: 46
  start-page: 913
  year: 2017
  ident: JPCS_1302_3_032012bib1
  article-title: Deep learning in NLP: methods and applications
  publication-title: Journal of University of Electronic Science & Technology of China
– year: 2017
  ident: JPCS_1302_3_032012bib2
  article-title: A survey on deep learning in big data
  doi: 10.1109/CSE-EUC.2017.215
– volume: 19
  start-page: 2761
  year: 2010
  ident: JPCS_1302_3_032012bib16
  article-title: Image clustering using local discriminant models and global integration
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2010.2049235
– volume: 2
  start-page: 1
  year: 2009
  ident: JPCS_1302_3_032012bib8
  article-title: Learning Deep Architectures for AI
  publication-title: Foundations and Trends® in Machine Learning
  doi: 10.1561/2200000006
– volume: 97
  start-page: 611
  year: 2002
  ident: JPCS_1302_3_032012bib15
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: Journal of the American statistical Association
  doi: 10.1198/016214502760047131
– volume: 18
  start-page: 1527
  year: 2006
  ident: JPCS_1302_3_032012bib11
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 10
  start-page: 1
  year: 2009
  ident: JPCS_1302_3_032012bib10
  article-title: Exploring strategies for training deep neural networks
  publication-title: Journal of machine learning research
– volume: 12
  year: 1995
  ident: JPCS_1302_3_032012bib12
  article-title: Neural networks for pattern recognition
  publication-title: Agricultural Engineering International the Cigr Journal of Scientific Research & Development Manuscript Pm
SSID ssj0033337
Score 2.266775
Snippet Clustering autonomously learns the implicit cluster structure in the original data without prior knowledge. The effect of ordinary clustering algorithms is not...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 32012
SubjectTerms Algorithms
Clustering
Coders
Physics
Probabilistic models
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86FXzxW5xOCeijdW2Spgk-jfmF6BRU3Ftpk1QHsxvrJv755tZWKSJDsC_tw10bftfmrtzHD6GjJPIjRalyrKtSDvPiyJGQKaSeJi6NZaxzS98EnY7odmWlF2YwLLb-E3uZDwrOISwK4kTTxtDE4b7kTUi6NWkTOMCBaHiBCt-Hsr47-lzuxtQeQd4UCUpClDVev9-o4qHm7Sp-bNNT33Ox-h-rXkMrReSJW7nGOpoz6QZamlaAqmwTnbbwmTFD3O5PYHaC9Wi41X8ZjHrj1zcMvk7jQYovo0kGbZf4tvcBuQcMXGr9LfR0cf7YvnIKZgVHUfuP5UhfKJ_rwNMQwXElSEKZVm6sGTNaewkjSkolmNKG6YQQw0TC_YCYyLVGl3Qb1dJBanYQFgoYwWXgMg1dXEEUiZhbl8cTESREqDriJZqhKsaOA_tFP5ymv4UIAZkQkIHUGglpmCNTR-6X4jCfvDFb5djCHxZfYTZb_LAifn3ffqhKhEOd1FGjtP63qA0UA-kBuenu3565h5btSeYlhA1UG48mZh8tqvdxLxsdTF_dTwuC4gk
  priority: 102
  providerName: IOP Publishing
Title A Deep Clustering Algorithm based on Gaussian Mixture Model
URI https://iopscience.iop.org/article/10.1088/1742-6596/1302/3/032012
https://www.proquest.com/docview/2567915759
Volume 1302
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-i7SZx4RtRGJUldiRKYjuJLQ6oKxsbYl00mDZ2iRLbYZW6NjQt4s-fX-MwVUjsshxySJ4tJe_l_ey8jx_AbplHuWJMeRaqlMfDIvckRgpZqGnAClnoRtNfk_FYXFzI1JVH1y6tsvWJa0fddHvGvG3rhH09V_jH3LdAncgQySU_Vr885JDCWKsj1OhADxtvBV3opUfH6Y_WMzN7JE2BJPUs8oo238tuAt01GfsYyfOZj8TiId1Aq85kXv3jstc4dPD4fp_gCTxy61EybAzoKTwws2ewvc4LVfVz-DAkn4ypyGi6wo4KFufIcPrTzrO8uiaIgJrMZ-RzvqqxGJMcT_5gRIIgw9r0BZwd7H8fHXqOb8FTzO68PBkJFcU6CTWu62IlaMm4VkGhOTdahyWnSkoluNKG65JSw0UZRwk1eWBNQbKX0J3NZ-YVEKGQJ1wmAddY25XkuShiC4RxKZKSCtWHuH2vmXLNyJETY5qtg-JCZKiQDBWCATeasaxRSB-CvwOrph_H3UPeW8Vl7tus7xZ_tyH-JR1925TIKl32YadV8q3orU5f___2G3hoJ5JNIuEOdJeLlXkLW-r3clIvBtDb2x-npwPonLBze06jy4Ez5RuRofWk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9swED6xsml7AbYxrQOGJba3RU1sN7GFJlSVMQptVWlMgieT2A5U6tqMtAP-qf2N-JpkqJo0nnhYHpNzlOTO99m5Hx_AhzRuxpox7Tmo0h4PktiTGClkgaE-S2RiCk13o35fnJ7KwRL8rmphMK2y8olzR20mGv-RNxw0RzJAOsm97KeHrFEYXa0oNAqzOLa3127Lln_u7Dv9fqT04MtJ-9ArWQU8zdz-wpNNoZuhiQKDq5dQC5oybrSfGM6tMUHKqZZSC66N5Sal1HKRhs2I2th3L4zNl5zLX-bO2P0aLA86vcFZ5fuZO6KiBJN6DttFlVHmtpnlORk2MFbYYA2kLg_oAh4-GU6yv0BhjnQHq__bN1qDlXJNTVrFJHgJS3b8Cp7Nc1t1_hp2W2Tf2oy0RzPsCuGwmrRGF-65p5c_CKK4IZMx-RrPciwoJb3hDUZVCLLEjdbh-6M8-RuojSdj-xaI0Mh1LiOfG6xPi-JYJKED8zAVUUqFrkNYaU7psqE68nqM1DywL4RClStUOQYNqWKqUHkd_D8Ds6KnyMNDPjnTUKV_yR8W31kQPxq0vy1KqMykddiszOhe9N6G3v378jY8PzzpdVW30z_egBfuprJIjNyE2vRqZrfgqf41HeZX78tJQuD8sW3uDleCRHA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED9R2CZegG0gOmBY2h6XJbGdxBZPVaEM1nWVtml9sxLbYZVKU_UD8efP1yRFFUJo0vIURXeJdefcnXUfP4CPeRqlmjHtOVelPR5mqScxU8hCQwOWycyUmu4mvZ4YDGR_AzqrXphiUpn-z-62HBRcirAqiBO-i6GpF0cy9jHp5jMfMcBD6k9M3oAtHFeCSAbf2e_aIjN3JWVjJDIKUdd5Pf2yNS_VcCt5ZKqX_qez-79Wvgc7VQRKWiXXa9iw4zfwclkJqmdv4axFzq2dkPZogTMUnGcjrdFNMR3O_9wS9HmGFGNymS5m2H5Jvg3vMQdBEFNttA-_Ohc_21-8CmHB08ydtTwZCR3FJgkNRnKxFjRn3OggM5xbY8KcUy2lFlwby01OqeUij6OE2jRwypfsADbHxdgeAhEakcFlEnCD3VxJmoosdq4vzkWSU6GbENcSVboaP44oGCO1TIMLoVA6CqWDKTaqmCql04RgxTgpJ3A8z_LJqUBVf-PsefIPa-TX_faPdQrlNNSE43oHPJC6gDGRIYKcvvu3b57Cq_55R3Wvel-PYNs9kWVV4TFszqcLewIv9N18OJu-X-7kv3vi52g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Clustering+Algorithm+based+on+Gaussian+Mixture+Model&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Lin%2C+Xianghong&rft.au=Yang%2C+Xiaofei&rft.au=Li%2C+Ying&rft.date=2019-08-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1302&rft.issue=3&rft_id=info:doi/10.1088%2F1742-6596%2F1302%2F3%2F032012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon