Accelerated model‐based iterative reconstruction strategy for sparse‐view photoacoustic tomography aided by multi‐channel autoencoder priors

Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model‐based iterative reconstruction strateg...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of biophotonics Ročník 17; číslo 1; s. e202300281 - n/a
Hlavní autori: Song, Xianlin, Zhong, Wenhua, Li, Zilong, Peng, Shuchong, Zhang, Hongyu, Wang, Guijun, Dong, Jiaqing, Liu, Xuan, Xu, Xiaoling, Liu, Qiegen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.01.2024
Wiley Subscription Services, Inc
Predmet:
ISSN:1864-063X, 1864-0648, 1864-0648
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model‐based iterative reconstruction strategy for sparse‐view PAT aided by multi‐channel autoencoder priors was proposed. A multi‐channel denoising autoencoder network was designed to learn prior information, which provides constraints for model‐based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The performance of the proposed method was evaluated using blood vessel simulation data and experimental data. The results show that the proposed method can achieve superior sparse‐view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition (e.g., 32 projections) compared with the U‐Net method, with an improvement of 48% in PSNR and 12% in SSIM for in vivo experimental data. A novel accelerated model‐based iterative reconstruction strategy for sparse‐view PAT aided by multi‐channel autoencoder priors was proposed. A multi‐channel denoising autoencoder network was designed to learn prior information, which provides constraints for model‐based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The results show that the proposed method can achieve superior sparse‐view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition.
AbstractList Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model-based iterative reconstruction strategy for sparse-view PAT aided by multi-channel autoencoder priors was proposed. A multi-channel denoising autoencoder network was designed to learn prior information, which provides constraints for model-based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The performance of the proposed method was evaluated using blood vessel simulation data and experimental data. The results show that the proposed method can achieve superior sparse-view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition (e.g., 32 projections) compared with the U-Net method, with an improvement of 48% in PSNR and 12% in SSIM for in vivo experimental data.
Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model-based iterative reconstruction strategy for sparse-view PAT aided by multi-channel autoencoder priors was proposed. A multi-channel denoising autoencoder network was designed to learn prior information, which provides constraints for model-based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The performance of the proposed method was evaluated using blood vessel simulation data and experimental data. The results show that the proposed method can achieve superior sparse-view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition (e.g., 32 projections) compared with the U-Net method, with an improvement of 48% in PSNR and 12% in SSIM for in vivo experimental data.Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model-based iterative reconstruction strategy for sparse-view PAT aided by multi-channel autoencoder priors was proposed. A multi-channel denoising autoencoder network was designed to learn prior information, which provides constraints for model-based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The performance of the proposed method was evaluated using blood vessel simulation data and experimental data. The results show that the proposed method can achieve superior sparse-view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition (e.g., 32 projections) compared with the U-Net method, with an improvement of 48% in PSNR and 12% in SSIM for in vivo experimental data.
Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model‐based iterative reconstruction strategy for sparse‐view PAT aided by multi‐channel autoencoder priors was proposed. A multi‐channel denoising autoencoder network was designed to learn prior information, which provides constraints for model‐based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The performance of the proposed method was evaluated using blood vessel simulation data and experimental data. The results show that the proposed method can achieve superior sparse‐view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition (e.g., 32 projections) compared with the U‐Net method, with an improvement of 48% in PSNR and 12% in SSIM for in vivo experimental data. A novel accelerated model‐based iterative reconstruction strategy for sparse‐view PAT aided by multi‐channel autoencoder priors was proposed. A multi‐channel denoising autoencoder network was designed to learn prior information, which provides constraints for model‐based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The results show that the proposed method can achieve superior sparse‐view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition.
Author Liu, Xuan
Li, Zilong
Xu, Xiaoling
Liu, Qiegen
Wang, Guijun
Song, Xianlin
Zhong, Wenhua
Peng, Shuchong
Zhang, Hongyu
Dong, Jiaqing
Author_xml – sequence: 1
  givenname: Xianlin
  orcidid: 0000-0002-0356-5977
  surname: Song
  fullname: Song, Xianlin
  organization: Nanchang University
– sequence: 2
  givenname: Wenhua
  surname: Zhong
  fullname: Zhong, Wenhua
  organization: Nanchang University
– sequence: 3
  givenname: Zilong
  surname: Li
  fullname: Li, Zilong
  organization: Nanchang University
– sequence: 4
  givenname: Shuchong
  surname: Peng
  fullname: Peng, Shuchong
  organization: Nanchang University
– sequence: 5
  givenname: Hongyu
  surname: Zhang
  fullname: Zhang, Hongyu
  organization: Nanchang University
– sequence: 6
  givenname: Guijun
  surname: Wang
  fullname: Wang, Guijun
  organization: Nanchang University
– sequence: 7
  givenname: Jiaqing
  surname: Dong
  fullname: Dong, Jiaqing
  organization: Nanchang University
– sequence: 8
  givenname: Xuan
  surname: Liu
  fullname: Liu, Xuan
  organization: Nanchang University
– sequence: 9
  givenname: Xiaoling
  surname: Xu
  fullname: Xu, Xiaoling
  email: xuxiaoling@ncu.edu.cn
  organization: Nanchang University
– sequence: 10
  givenname: Qiegen
  orcidid: 0000-0003-4717-2283
  surname: Liu
  fullname: Liu, Qiegen
  email: liuqiegen@ncu.edu.cn
  organization: Nanchang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38010827$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URH9gyxJZYsNmBv8kcbIsVaGtKnUDErvIsW86HiV2sJ1W2fEIiEfkSbijKYPEhpXPtb5z7XPvKTnywQMhrzlbc8bE-23nwlowIbGo-TNywuuqWLGqqI8OWn49JqcpbRmrmCzlC3Isa8ZZLdQJ-XluDAwQdQZLx2Bh-PX9R6cTVi7vrt0D0Agm-JTjbLILnqJC_H6hfYg0TTomQNODg0c6bUIO2oQ5ZWdoDmO4j3raLFQ7iy27hY7zkB3iZqO9h4HqOQfwBl-OdIouxPSSPO_1kODV03lGvny8_Hxxtbq9-3R9cX67MhKjrvqqsQrK0loruq7cyaKvKs4raRtd9KZXSqK0nZEAFUMXmLJXtW2ghL6WZ-Tdvu8Uw7cZUm5Hl3AYg_aAAVpRN4USnKkC0bf_oNswR4-_a0XDlVRcKYHUmydq7kawLcYZdVzaP9NGYL0HTAwpRegPCGftbp3tbp3tYZ1oaPaGRzfA8h-6vflwfffX-xun5KrU
Cites_doi 10.1063/5.0018190
10.1117/1.JBO.28.8.082804
10.1364/BOE.434172
10.1109/TUFFC.2014.2930
10.1109/TMI.2021.3081677
10.1109/TMI.2018.2820382
10.1117/1.JBO.25.11.112903
10.1109/TMI.2004.825627
10.1109/TIP.2015.2423615
10.1109/TRPMS.2020.2989634
10.1364/BOE.423707
10.14366/usg.16035
10.1016/0167-2789(92)90242-F
10.1088/1361-6420/aa9581
10.1117/1.3360308
10.1016/j.pacs.2022.100442
10.1109/TMI.2014.2371235
10.1103/PhysRevE.71.016706
10.1088/0967-3334/37/12/2214
10.1088/1361-6420/ab6d57
10.1364/BOE.396598
10.1364/OL.450860
10.1126/science.1216210
10.1002/mp.13023
10.1038/nbt839
10.1063/1.2382732
10.1063/5.0008401
10.1109/EMBC.2019.8856590
10.1364/BOE.469460
10.1038/s42256-019-0095-3
10.1002/mrm.27921
10.1016/j.cmpb.2016.10.007
10.3390/s21237947
10.1016/j.pacs.2020.100218
10.1109/JBHI.2019.2912935
10.1016/j.pacs.2022.100380
10.1117/1.3605696
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH.
2023 Wiley-VCH GmbH.
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH.
– notice: 2023 Wiley-VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
DOI 10.1002/jbio.202300281
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Technology Research Database
Electronics & Communications Abstracts
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1864-0648
EndPage n/a
ExternalDocumentID 38010827
10_1002_jbio_202300281
JBIO202300281
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Jiangxi Provincial Natural Science Foundation
  funderid: 20224BAB212006; 20232BAB202038
– fundername: National Natural Science Foundation of China
  funderid: 62265011; 62122033
– fundername: Key Research and Development Program of Jiangxi Province
  funderid: 20212BBE53001
– fundername: Jiangxi Provincial Natural Science Foundation
  grantid: 20224BAB212006
– fundername: Key Research and Development Program of Jiangxi Province
  grantid: 20212BBE53001
– fundername: Jiangxi Provincial Natural Science Foundation
  grantid: 20232BAB202038
– fundername: National Natural Science Foundation of China
  grantid: 62122033
– fundername: National Natural Science Foundation of China
  grantid: 62265011
GroupedDBID ---
05W
0R~
1OC
31~
33P
3SF
4.4
52U
52V
53G
5DZ
5GY
66C
8-0
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F5P
FEDTE
FUBAC
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NNB
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
ID FETCH-LOGICAL-c3281-f69d7e55ddd2bb57e554f661163d9a4fcf7733d9dbc3ee60c32ec5f78d9e5ef83
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001114769700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-063X
1864-0648
IngestDate Sun Nov 09 13:38:40 EST 2025
Sat Nov 29 14:33:05 EST 2025
Mon Jul 21 06:02:43 EDT 2025
Sat Nov 29 03:12:16 EST 2025
Wed Jan 22 16:16:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords multichannel autoencoder priors
model-based iterative reconstruction
sparse view
photoacoustic tomography
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3281-f69d7e55ddd2bb57e554f661163d9a4fcf7733d9dbc3ee60c32ec5f78d9e5ef83
Notes Xianlin Song, Wenhua Zhong, and Zilong Li contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4717-2283
0000-0002-0356-5977
PMID 38010827
PQID 2917371772
PQPubID 1006377
PageCount 17
ParticipantIDs proquest_miscellaneous_2894721074
proquest_journals_2917371772
pubmed_primary_38010827
crossref_primary_10_1002_jbio_202300281
wiley_primary_10_1002_jbio_202300281_JBIO202300281
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
– name: Jena
PublicationTitle Journal of biophotonics
PublicationTitleAlternate J Biophotonics
PublicationYear 2024
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2015; 34
2021; 21
2021; 5
2010; 15
2019; 1
2020; 83
2004; 23
2020; 127
2020; 128
2022; 47
2020; 36
2020; 11
2018; 45
2011; 16
2018; 10494
2014; 61
2016; 37
2022; 27
2016; 35
2017; 138
2015; 24
2021; 12
2023; 28
2006; 89
2023; 29
2017; 33
2022; 13
2017
2020; 25
2020; 24
2005; 71
2012; 25
2012; 335
2021; 40
1992; 60
2003; 21
2018; 37
e_1_2_9_30_1
e_1_2_9_31_1
Antholzer S. (e_1_2_9_21_1) 2018; 10494
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_24_1
Waibel D. (e_1_2_9_26_1) 2018; 10494
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Xie J. (e_1_2_9_42_1) 2012; 25
e_1_2_9_29_1
References_xml – volume: 37
  start-page: 2214
  year: 2016
  publication-title: Physiol. Meas.
– volume: 45
  start-page: 3749
  year: 2018
  publication-title: Med. Phys.
– volume: 61
  start-page: 450
  year: 2014
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 27
  year: 2022
  publication-title: Photoacoustics
– volume: 10494
  year: 2018
  publication-title: Proc. SPIE
– volume: 21
  start-page: 803
  year: 2003
  publication-title: Nat. Biotechnol.
– volume: 83
  start-page: 322
  year: 2020
  publication-title: Magn. Reson. Med.
– volume: 25
  start-page: 341
  year: 2012
  publication-title: In Proc. NIPS
– volume: 33
  year: 2017
  publication-title: Inverse Prob.
– volume: 24
  start-page: 568
  year: 2020
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 12
  start-page: 4056
  year: 2021
  publication-title: Biomed. Opt. Express
– volume: 71
  year: 2005
  publication-title: Phys. Rev. E
– volume: 35
  start-page: 267
  year: 2016
  publication-title: Ultrasonography
– volume: 36
  year: 2020
  publication-title: Inverse Probl.
– volume: 5
  start-page: 108
  year: 2021
  publication-title: IEEE Trans. Radiat. Plasma Med. Sci.
– volume: 29
  year: 2023
  publication-title: Photoacoustics
– volume: 34
  start-page: 940
  year: 2015
  publication-title: IEEE Trans. Med. Imaging
– volume: 335
  start-page: 1458
  year: 2012
  publication-title: Science
– volume: 1
  start-page: 453
  year: 2019
  publication-title: Nat. Mach. Intell.
– volume: 24
  start-page: 2889
  year: 2015
  publication-title: IEEE Trans. Image Process.
– volume: 40
  start-page: 3265
  year: 2021
  publication-title: IEEE Trans. Med. Imaging
– volume: 25
  year: 2020
  publication-title: J. Biomed. Opt.
– volume: 15
  year: 2010
  publication-title: J. Biomed. Opt.
– volume: 60
  start-page: 259
  year: 1992
  publication-title: Physica D: Nonlinear Phenom.
– volume: 47
  start-page: 1911
  year: 2022
  publication-title: Opt. Lett.
– volume: 12
  start-page: 6284
  year: 2021
  publication-title: Biomed. Opt. Express
– volume: 16
  year: 2011
  publication-title: J. Biomed. Opt.
– volume: 11
  start-page: 5321
  year: 2020
  publication-title: Biomed. Opt. Express
– volume: 23
  start-page: 501
  year: 2004
  publication-title: IEEE Trans. Med. Imaging
– volume: 13
  start-page: 5721
  year: 2022
  publication-title: Biomed. Opt. Express
– volume: 21
  start-page: 7947
  year: 2021
  publication-title: Sensors
– volume: 138
  start-page: 49
  year: 2017
  publication-title: Comput. Methods Programs Biomed.
– year: 2017
– volume: 37
  start-page: 1382
  year: 2018
  publication-title: IEEE Trans. Med. Imaging
– volume: 128
  year: 2020
  publication-title: J. Appl. Phys.
– volume: 127
  year: 2020
  publication-title: J. Appl. Phys.
– volume: 28
  year: 2023
  publication-title: J. Biomed. Opt.
– volume: 21
  year: 2021
  publication-title: Photoacoustics
– volume: 89
  year: 2006
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_9_3_1
  doi: 10.1063/5.0018190
– ident: e_1_2_9_2_1
  doi: 10.1117/1.JBO.28.8.082804
– ident: e_1_2_9_15_1
  doi: 10.1364/BOE.434172
– ident: e_1_2_9_36_1
  doi: 10.1109/TUFFC.2014.2930
– ident: e_1_2_9_16_1
  doi: 10.1109/TMI.2021.3081677
– ident: e_1_2_9_27_1
  doi: 10.1109/TMI.2018.2820382
– ident: e_1_2_9_20_1
– volume: 10494
  year: 2018
  ident: e_1_2_9_26_1
  publication-title: Proc. SPIE
– ident: e_1_2_9_44_1
  doi: 10.1117/1.JBO.25.11.112903
– ident: e_1_2_9_41_1
  doi: 10.1109/TMI.2004.825627
– ident: e_1_2_9_40_1
  doi: 10.1109/TIP.2015.2423615
– ident: e_1_2_9_34_1
  doi: 10.1109/TRPMS.2020.2989634
– ident: e_1_2_9_7_1
  doi: 10.1364/BOE.423707
– ident: e_1_2_9_8_1
  doi: 10.14366/usg.16035
– ident: e_1_2_9_39_1
  doi: 10.1016/0167-2789(92)90242-F
– ident: e_1_2_9_32_1
– volume: 25
  start-page: 341
  year: 2012
  ident: e_1_2_9_42_1
  publication-title: In Proc. NIPS
– ident: e_1_2_9_29_1
  doi: 10.1088/1361-6420/aa9581
– ident: e_1_2_9_37_1
  doi: 10.1117/1.3360308
– ident: e_1_2_9_38_1
  doi: 10.1016/j.pacs.2022.100442
– ident: e_1_2_9_12_1
  doi: 10.1109/TMI.2014.2371235
– ident: e_1_2_9_11_1
  doi: 10.1103/PhysRevE.71.016706
– ident: e_1_2_9_31_1
  doi: 10.1088/0967-3334/37/12/2214
– ident: e_1_2_9_28_1
  doi: 10.1088/1361-6420/ab6d57
– volume: 10494
  year: 2018
  ident: e_1_2_9_21_1
  publication-title: Proc. SPIE
– ident: e_1_2_9_25_1
  doi: 10.1364/BOE.396598
– ident: e_1_2_9_18_1
  doi: 10.1364/OL.450860
– ident: e_1_2_9_5_1
  doi: 10.1126/science.1216210
– ident: e_1_2_9_43_1
  doi: 10.1002/mp.13023
– ident: e_1_2_9_6_1
  doi: 10.1038/nbt839
– ident: e_1_2_9_13_1
  doi: 10.1063/1.2382732
– ident: e_1_2_9_10_1
  doi: 10.1063/5.0008401
– ident: e_1_2_9_24_1
  doi: 10.1109/EMBC.2019.8856590
– ident: e_1_2_9_30_1
  doi: 10.1364/BOE.469460
– ident: e_1_2_9_23_1
  doi: 10.1038/s42256-019-0095-3
– ident: e_1_2_9_35_1
  doi: 10.1002/mrm.27921
– ident: e_1_2_9_33_1
– ident: e_1_2_9_17_1
  doi: 10.1016/j.cmpb.2016.10.007
– ident: e_1_2_9_9_1
  doi: 10.3390/s21237947
– ident: e_1_2_9_19_1
  doi: 10.1016/j.pacs.2020.100218
– ident: e_1_2_9_22_1
  doi: 10.1109/JBHI.2019.2912935
– ident: e_1_2_9_4_1
  doi: 10.1016/j.pacs.2022.100380
– ident: e_1_2_9_14_1
  doi: 10.1117/1.3605696
SSID ssj0060353
Score 2.3555472
Snippet Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202300281
SubjectTerms Algorithms
Blood vessels
Computer Simulation
Constraint modelling
Data acquisition
Experimental data
Image Processing, Computer-Assisted - methods
Image reconstruction
Iterative methods
model‐based iterative reconstruction
multichannel autoencoder priors
Phantoms, Imaging
Photoacoustic effect
photoacoustic tomography
sparse view
Tomography
Tomography, X-Ray Computed - methods
Title Accelerated model‐based iterative reconstruction strategy for sparse‐view photoacoustic tomography aided by multi‐channel autoencoder priors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.202300281
https://www.ncbi.nlm.nih.gov/pubmed/38010827
https://www.proquest.com/docview/2917371772
https://www.proquest.com/docview/2894721074
Volume 17
WOSCitedRecordID wos001114769700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1864-0648
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060353
  issn: 1864-063X
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2i0y5gAZRSSFsqIyF1FTU4DyfLtnQEqGoRotLsIr8iphKTUTIgdccnID6RL-HYyaQdsahEd87Dedj33nNuHB8TvdHcagNgDhOpizBBquN8TobawKC0zqPM-onCZ-L8PJ9Mik-3ZvF3-hDDBzfnGT5eOweXqj28EQ29UlM3eQ8UGhCJ_Gedw3jTEa2_-zy-PFtG4wz7_E_2eZaEgOPJUrgx4oerV1gFpn_Y5ip59egzfnL_535Kj3vmyY46U9mkB3b2jB7d0iPcot9HWgOGnHqEYX6NnD8_fzmcM6xTX0ZoZD6FHmRnWdvJ214zsF-G8NS0FpXcgAObf60XNSKuXzCMLepvvTw2c7KUhqlr5n9nxOlu-jHei8nvi9opaxrbsHkzrZv2OV2OT7-cvA_7RRtCHeN9wiorjLBpaozhSqWumFQgAeB9ppBJpSshYhSN0rG1WYRaVqeVyE1hU1vl8TaNZvXMviTmBptTw99mSupExLlUopCR4jKyAiCaBnSw7LFy3mlzlJ0KMy9dK5dDKwe0t-zQsvfRtuTIVGNks4IH9Ho4DO9yQyZyZtE6JdLRBDkyeFZALzpDGG4VA9xBoERA3Pf3Hc9Qfjz-cDFs7fxPpV16iHLSfQHaoxG62r6iDf1jMW2bfVoTk3y_t_-_I_IMRw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFL1CLRKw4F0IFDASEquoqePEybI8Ri0MA0KtNDvLsR0xSExGyYDUHZ-A-ES-hGMnExixQELs8nIe9r33nGvHx0RPDHfGAphjoU0ZC6Q63ud0bCwMypgiyV2YKDyVs1kxn5fvhr8J_VyYXh9i7HDznhHitXdw3yF98Es19GO18LP3wKGBkUiAdgVsCUa---L95Gy6Ccd5kgYpysMiFzHweL5Rbkz4wfYdtpHpD7q5zV4D_Eyu_YcXv05XB-7JjnpjuUEX3PImXflNkfAWfT8yBkDk9SMsC6vk_Pj6zSOdZb3-MoIjC0n0KDzLul7g9pyB_zIEqLZzKOSHHNjqQ7NuEHPDkmFs3XwaBLKZF6a0rDpn4YdGXO4nIOPDmP68bry2pnUtW7WLpu1u09nk5enz43hYtiE2Kb4nrvPSSpdl1lpeVZnfFDVoAJifLbWoTS1lik1bmdS5PEEpZ7JaFrZ0mauLdI92ls3S3SXmh5szyw_zShsh00JXstRJxXXiJGA0i-jppsnUqlfnUL0OM1e-ltVYyxHtb1pUDV7aKY5cNUU-K3lEj8fT8C8_aKKXDrWjkJAKZMlgWhHd6S1hfFQKeAeFkhHx0OB_eQf16tnJ23Hv3r8UekSXjk_fTNX0ZPb6Pl3GcdH3B-3TDprdPaCL5st60bUPBzf4Cc73D08
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFL1CMwjRRXm2DS1gJKSuomYcJ06WLSWiMBoqRKXZWY7tqFOpySiZVuqun1DxiXwJ184DRiwqIXZ5OXFs33vO9eMY4L2iRmkEZp9JlfoMQx1rc9JXGhuUUkkQG7dQeMpns2Q-T0-72YR2LUyrDzF0uFnLcP7aGrhZ6uLgt2roRb6wq_eQQyNGYgA0ZnYnmRGMj79lZ9PeHcdB6KQoJ0nMfMTjea_cGNCD9TesI9NfdHOdvTr4yZ78h4w_hc2Oe5LDtrE8gwemfA4bfygSvoAfh0ohEFn9CE3cLjk_b-8s0mnS6i-jcyQuiB6EZ0nTCtzeEOS_BB1U3RhMZIccyPK8WlXoc92WYWRVXXYC2cQKU2qS3xA3oREftwuQ8ceIvFpVVltTm5os60VVNy_hLPv4_cMnv9u2wVch_o9fxKnmJoq01jTPI3vICqQByPx0KlmhCs5DPNS5Co2JA0xlVFTwRKcmMkUSbsGorEqzA8QON0eaTuJcKsbDROY8lUFOZWA4wmjkwX5fZWLZqnOIVoeZClvKYihlD_b6GhWdlTaCYqwaYjzLqQfvhttoX3bQRJYGS0dgQMowSkam5cF22xKGT4UI70ihuAfUVfg9eRCfj06-Dmev_iXRW3h0epyJ6cnsyy48xsus7Q7agxHWunkND9X1atHUbzor-AVGEw7K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+model%E2%80%90based+iterative+reconstruction+strategy+for+sparse%E2%80%90view+photoacoustic+tomography+aided+by+multi%E2%80%90channel+autoencoder+priors&rft.jtitle=Journal+of+biophotonics&rft.au=Song%2C+Xianlin&rft.au=Zhong%2C+Wenhua&rft.au=Li%2C+Zilong&rft.au=Peng%2C+Shuchong&rft.date=2024-01-01&rft.issn=1864-063X&rft.eissn=1864-0648&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1002%2Fjbio.202300281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jbio_202300281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon