Accelerated model‐based iterative reconstruction strategy for sparse‐view photoacoustic tomography aided by multi‐channel autoencoder priors
Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model‐based iterative reconstruction strateg...
Uložené v:
| Vydané v: | Journal of biophotonics Ročník 17; číslo 1; s. e202300281 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.01.2024
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 1864-063X, 1864-0648, 1864-0648 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model‐based iterative reconstruction strategy for sparse‐view PAT aided by multi‐channel autoencoder priors was proposed. A multi‐channel denoising autoencoder network was designed to learn prior information, which provides constraints for model‐based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The performance of the proposed method was evaluated using blood vessel simulation data and experimental data. The results show that the proposed method can achieve superior sparse‐view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition (e.g., 32 projections) compared with the U‐Net method, with an improvement of 48% in PSNR and 12% in SSIM for in vivo experimental data.
A novel accelerated model‐based iterative reconstruction strategy for sparse‐view PAT aided by multi‐channel autoencoder priors was proposed. A multi‐channel denoising autoencoder network was designed to learn prior information, which provides constraints for model‐based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The results show that the proposed method can achieve superior sparse‐view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition. |
|---|---|
| AbstractList | Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model-based iterative reconstruction strategy for sparse-view PAT aided by multi-channel autoencoder priors was proposed. A multi-channel denoising autoencoder network was designed to learn prior information, which provides constraints for model-based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The performance of the proposed method was evaluated using blood vessel simulation data and experimental data. The results show that the proposed method can achieve superior sparse-view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition (e.g., 32 projections) compared with the U-Net method, with an improvement of 48% in PSNR and 12% in SSIM for in vivo experimental data. Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model-based iterative reconstruction strategy for sparse-view PAT aided by multi-channel autoencoder priors was proposed. A multi-channel denoising autoencoder network was designed to learn prior information, which provides constraints for model-based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The performance of the proposed method was evaluated using blood vessel simulation data and experimental data. The results show that the proposed method can achieve superior sparse-view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition (e.g., 32 projections) compared with the U-Net method, with an improvement of 48% in PSNR and 12% in SSIM for in vivo experimental data.Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model-based iterative reconstruction strategy for sparse-view PAT aided by multi-channel autoencoder priors was proposed. A multi-channel denoising autoencoder network was designed to learn prior information, which provides constraints for model-based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The performance of the proposed method was evaluated using blood vessel simulation data and experimental data. The results show that the proposed method can achieve superior sparse-view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition (e.g., 32 projections) compared with the U-Net method, with an improvement of 48% in PSNR and 12% in SSIM for in vivo experimental data. Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model‐based iterative reconstruction strategy for sparse‐view PAT aided by multi‐channel autoencoder priors was proposed. A multi‐channel denoising autoencoder network was designed to learn prior information, which provides constraints for model‐based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The performance of the proposed method was evaluated using blood vessel simulation data and experimental data. The results show that the proposed method can achieve superior sparse‐view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition (e.g., 32 projections) compared with the U‐Net method, with an improvement of 48% in PSNR and 12% in SSIM for in vivo experimental data. A novel accelerated model‐based iterative reconstruction strategy for sparse‐view PAT aided by multi‐channel autoencoder priors was proposed. A multi‐channel denoising autoencoder network was designed to learn prior information, which provides constraints for model‐based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The results show that the proposed method can achieve superior sparse‐view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition. |
| Author | Liu, Xuan Li, Zilong Xu, Xiaoling Liu, Qiegen Wang, Guijun Song, Xianlin Zhong, Wenhua Peng, Shuchong Zhang, Hongyu Dong, Jiaqing |
| Author_xml | – sequence: 1 givenname: Xianlin orcidid: 0000-0002-0356-5977 surname: Song fullname: Song, Xianlin organization: Nanchang University – sequence: 2 givenname: Wenhua surname: Zhong fullname: Zhong, Wenhua organization: Nanchang University – sequence: 3 givenname: Zilong surname: Li fullname: Li, Zilong organization: Nanchang University – sequence: 4 givenname: Shuchong surname: Peng fullname: Peng, Shuchong organization: Nanchang University – sequence: 5 givenname: Hongyu surname: Zhang fullname: Zhang, Hongyu organization: Nanchang University – sequence: 6 givenname: Guijun surname: Wang fullname: Wang, Guijun organization: Nanchang University – sequence: 7 givenname: Jiaqing surname: Dong fullname: Dong, Jiaqing organization: Nanchang University – sequence: 8 givenname: Xuan surname: Liu fullname: Liu, Xuan organization: Nanchang University – sequence: 9 givenname: Xiaoling surname: Xu fullname: Xu, Xiaoling email: xuxiaoling@ncu.edu.cn organization: Nanchang University – sequence: 10 givenname: Qiegen orcidid: 0000-0003-4717-2283 surname: Liu fullname: Liu, Qiegen email: liuqiegen@ncu.edu.cn organization: Nanchang University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38010827$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u1DAUhS1URH9gyxJZYsNmBv8kcbIsVaGtKnUDErvIsW86HiV2sJ1W2fEIiEfkSbijKYPEhpXPtb5z7XPvKTnywQMhrzlbc8bE-23nwlowIbGo-TNywuuqWLGqqI8OWn49JqcpbRmrmCzlC3Isa8ZZLdQJ-XluDAwQdQZLx2Bh-PX9R6cTVi7vrt0D0Agm-JTjbLILnqJC_H6hfYg0TTomQNODg0c6bUIO2oQ5ZWdoDmO4j3raLFQ7iy27hY7zkB3iZqO9h4HqOQfwBl-OdIouxPSSPO_1kODV03lGvny8_Hxxtbq9-3R9cX67MhKjrvqqsQrK0loruq7cyaKvKs4raRtd9KZXSqK0nZEAFUMXmLJXtW2ghL6WZ-Tdvu8Uw7cZUm5Hl3AYg_aAAVpRN4USnKkC0bf_oNswR4-_a0XDlVRcKYHUmydq7kawLcYZdVzaP9NGYL0HTAwpRegPCGftbp3tbp3tYZ1oaPaGRzfA8h-6vflwfffX-xun5KrU |
| Cites_doi | 10.1063/5.0018190 10.1117/1.JBO.28.8.082804 10.1364/BOE.434172 10.1109/TUFFC.2014.2930 10.1109/TMI.2021.3081677 10.1109/TMI.2018.2820382 10.1117/1.JBO.25.11.112903 10.1109/TMI.2004.825627 10.1109/TIP.2015.2423615 10.1109/TRPMS.2020.2989634 10.1364/BOE.423707 10.14366/usg.16035 10.1016/0167-2789(92)90242-F 10.1088/1361-6420/aa9581 10.1117/1.3360308 10.1016/j.pacs.2022.100442 10.1109/TMI.2014.2371235 10.1103/PhysRevE.71.016706 10.1088/0967-3334/37/12/2214 10.1088/1361-6420/ab6d57 10.1364/BOE.396598 10.1364/OL.450860 10.1126/science.1216210 10.1002/mp.13023 10.1038/nbt839 10.1063/1.2382732 10.1063/5.0008401 10.1109/EMBC.2019.8856590 10.1364/BOE.469460 10.1038/s42256-019-0095-3 10.1002/mrm.27921 10.1016/j.cmpb.2016.10.007 10.3390/s21237947 10.1016/j.pacs.2020.100218 10.1109/JBHI.2019.2912935 10.1016/j.pacs.2022.100380 10.1117/1.3605696 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH. 2023 Wiley-VCH GmbH. 2024 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH. – notice: 2023 Wiley-VCH GmbH. – notice: 2024 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 |
| DOI | 10.1002/jbio.202300281 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Biotechnology Research Abstracts Technology Research Database Electronics & Communications Abstracts ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1864-0648 |
| EndPage | n/a |
| ExternalDocumentID | 38010827 10_1002_jbio_202300281 JBIO202300281 |
| Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Jiangxi Provincial Natural Science Foundation funderid: 20224BAB212006; 20232BAB202038 – fundername: National Natural Science Foundation of China funderid: 62265011; 62122033 – fundername: Key Research and Development Program of Jiangxi Province funderid: 20212BBE53001 – fundername: Jiangxi Provincial Natural Science Foundation grantid: 20224BAB212006 – fundername: Key Research and Development Program of Jiangxi Province grantid: 20212BBE53001 – fundername: Jiangxi Provincial Natural Science Foundation grantid: 20232BAB202038 – fundername: National Natural Science Foundation of China grantid: 62122033 – fundername: National Natural Science Foundation of China grantid: 62265011 |
| GroupedDBID | --- 05W 0R~ 1OC 31~ 33P 3SF 4.4 52U 52V 53G 5DZ 5GY 66C 8-0 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABLJU ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRMAN DRSTM EBD EBS EJD EMOBN F5P FEDTE FUBAC G-S GODZA HGLYW HVGLF HZ~ IX1 KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NNB O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WIH WIJ WIK WOHZO WXSBR WYJ XV2 ZZTAW AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 |
| ID | FETCH-LOGICAL-c3281-f69d7e55ddd2bb57e554f661163d9a4fcf7733d9dbc3ee60c32ec5f78d9e5ef83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001114769700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-063X 1864-0648 |
| IngestDate | Sun Nov 09 13:38:40 EST 2025 Sat Nov 29 14:33:05 EST 2025 Mon Jul 21 06:02:43 EDT 2025 Sat Nov 29 03:12:16 EST 2025 Wed Jan 22 16:16:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | multichannel autoencoder priors model-based iterative reconstruction sparse view photoacoustic tomography |
| Language | English |
| License | 2023 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3281-f69d7e55ddd2bb57e554f661163d9a4fcf7733d9dbc3ee60c32ec5f78d9e5ef83 |
| Notes | Xianlin Song, Wenhua Zhong, and Zilong Li contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4717-2283 0000-0002-0356-5977 |
| PMID | 38010827 |
| PQID | 2917371772 |
| PQPubID | 1006377 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2894721074 proquest_journals_2917371772 pubmed_primary_38010827 crossref_primary_10_1002_jbio_202300281 wiley_primary_10_1002_jbio_202300281_JBIO202300281 |
| PublicationCentury | 2000 |
| PublicationDate | January 2024 2024-01-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany – name: Jena |
| PublicationTitle | Journal of biophotonics |
| PublicationTitleAlternate | J Biophotonics |
| PublicationYear | 2024 |
| Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
| References | 2015; 34 2021; 21 2021; 5 2010; 15 2019; 1 2020; 83 2004; 23 2020; 127 2020; 128 2022; 47 2020; 36 2020; 11 2018; 45 2011; 16 2018; 10494 2014; 61 2016; 37 2022; 27 2016; 35 2017; 138 2015; 24 2021; 12 2023; 28 2006; 89 2023; 29 2017; 33 2022; 13 2017 2020; 25 2020; 24 2005; 71 2012; 25 2012; 335 2021; 40 1992; 60 2003; 21 2018; 37 e_1_2_9_30_1 e_1_2_9_31_1 Antholzer S. (e_1_2_9_21_1) 2018; 10494 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_24_1 Waibel D. (e_1_2_9_26_1) 2018; 10494 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 Xie J. (e_1_2_9_42_1) 2012; 25 e_1_2_9_29_1 |
| References_xml | – volume: 37 start-page: 2214 year: 2016 publication-title: Physiol. Meas. – volume: 45 start-page: 3749 year: 2018 publication-title: Med. Phys. – volume: 61 start-page: 450 year: 2014 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 27 year: 2022 publication-title: Photoacoustics – volume: 10494 year: 2018 publication-title: Proc. SPIE – volume: 21 start-page: 803 year: 2003 publication-title: Nat. Biotechnol. – volume: 83 start-page: 322 year: 2020 publication-title: Magn. Reson. Med. – volume: 25 start-page: 341 year: 2012 publication-title: In Proc. NIPS – volume: 33 year: 2017 publication-title: Inverse Prob. – volume: 24 start-page: 568 year: 2020 publication-title: IEEE J. Biomed. Health Inform. – volume: 12 start-page: 4056 year: 2021 publication-title: Biomed. Opt. Express – volume: 71 year: 2005 publication-title: Phys. Rev. E – volume: 35 start-page: 267 year: 2016 publication-title: Ultrasonography – volume: 36 year: 2020 publication-title: Inverse Probl. – volume: 5 start-page: 108 year: 2021 publication-title: IEEE Trans. Radiat. Plasma Med. Sci. – volume: 29 year: 2023 publication-title: Photoacoustics – volume: 34 start-page: 940 year: 2015 publication-title: IEEE Trans. Med. Imaging – volume: 335 start-page: 1458 year: 2012 publication-title: Science – volume: 1 start-page: 453 year: 2019 publication-title: Nat. Mach. Intell. – volume: 24 start-page: 2889 year: 2015 publication-title: IEEE Trans. Image Process. – volume: 40 start-page: 3265 year: 2021 publication-title: IEEE Trans. Med. Imaging – volume: 25 year: 2020 publication-title: J. Biomed. Opt. – volume: 15 year: 2010 publication-title: J. Biomed. Opt. – volume: 60 start-page: 259 year: 1992 publication-title: Physica D: Nonlinear Phenom. – volume: 47 start-page: 1911 year: 2022 publication-title: Opt. Lett. – volume: 12 start-page: 6284 year: 2021 publication-title: Biomed. Opt. Express – volume: 16 year: 2011 publication-title: J. Biomed. Opt. – volume: 11 start-page: 5321 year: 2020 publication-title: Biomed. Opt. Express – volume: 23 start-page: 501 year: 2004 publication-title: IEEE Trans. Med. Imaging – volume: 13 start-page: 5721 year: 2022 publication-title: Biomed. Opt. Express – volume: 21 start-page: 7947 year: 2021 publication-title: Sensors – volume: 138 start-page: 49 year: 2017 publication-title: Comput. Methods Programs Biomed. – year: 2017 – volume: 37 start-page: 1382 year: 2018 publication-title: IEEE Trans. Med. Imaging – volume: 128 year: 2020 publication-title: J. Appl. Phys. – volume: 127 year: 2020 publication-title: J. Appl. Phys. – volume: 28 year: 2023 publication-title: J. Biomed. Opt. – volume: 21 year: 2021 publication-title: Photoacoustics – volume: 89 year: 2006 publication-title: Appl. Phys. Lett. – ident: e_1_2_9_3_1 doi: 10.1063/5.0018190 – ident: e_1_2_9_2_1 doi: 10.1117/1.JBO.28.8.082804 – ident: e_1_2_9_15_1 doi: 10.1364/BOE.434172 – ident: e_1_2_9_36_1 doi: 10.1109/TUFFC.2014.2930 – ident: e_1_2_9_16_1 doi: 10.1109/TMI.2021.3081677 – ident: e_1_2_9_27_1 doi: 10.1109/TMI.2018.2820382 – ident: e_1_2_9_20_1 – volume: 10494 year: 2018 ident: e_1_2_9_26_1 publication-title: Proc. SPIE – ident: e_1_2_9_44_1 doi: 10.1117/1.JBO.25.11.112903 – ident: e_1_2_9_41_1 doi: 10.1109/TMI.2004.825627 – ident: e_1_2_9_40_1 doi: 10.1109/TIP.2015.2423615 – ident: e_1_2_9_34_1 doi: 10.1109/TRPMS.2020.2989634 – ident: e_1_2_9_7_1 doi: 10.1364/BOE.423707 – ident: e_1_2_9_8_1 doi: 10.14366/usg.16035 – ident: e_1_2_9_39_1 doi: 10.1016/0167-2789(92)90242-F – ident: e_1_2_9_32_1 – volume: 25 start-page: 341 year: 2012 ident: e_1_2_9_42_1 publication-title: In Proc. NIPS – ident: e_1_2_9_29_1 doi: 10.1088/1361-6420/aa9581 – ident: e_1_2_9_37_1 doi: 10.1117/1.3360308 – ident: e_1_2_9_38_1 doi: 10.1016/j.pacs.2022.100442 – ident: e_1_2_9_12_1 doi: 10.1109/TMI.2014.2371235 – ident: e_1_2_9_11_1 doi: 10.1103/PhysRevE.71.016706 – ident: e_1_2_9_31_1 doi: 10.1088/0967-3334/37/12/2214 – ident: e_1_2_9_28_1 doi: 10.1088/1361-6420/ab6d57 – volume: 10494 year: 2018 ident: e_1_2_9_21_1 publication-title: Proc. SPIE – ident: e_1_2_9_25_1 doi: 10.1364/BOE.396598 – ident: e_1_2_9_18_1 doi: 10.1364/OL.450860 – ident: e_1_2_9_5_1 doi: 10.1126/science.1216210 – ident: e_1_2_9_43_1 doi: 10.1002/mp.13023 – ident: e_1_2_9_6_1 doi: 10.1038/nbt839 – ident: e_1_2_9_13_1 doi: 10.1063/1.2382732 – ident: e_1_2_9_10_1 doi: 10.1063/5.0008401 – ident: e_1_2_9_24_1 doi: 10.1109/EMBC.2019.8856590 – ident: e_1_2_9_30_1 doi: 10.1364/BOE.469460 – ident: e_1_2_9_23_1 doi: 10.1038/s42256-019-0095-3 – ident: e_1_2_9_35_1 doi: 10.1002/mrm.27921 – ident: e_1_2_9_33_1 – ident: e_1_2_9_17_1 doi: 10.1016/j.cmpb.2016.10.007 – ident: e_1_2_9_9_1 doi: 10.3390/s21237947 – ident: e_1_2_9_19_1 doi: 10.1016/j.pacs.2020.100218 – ident: e_1_2_9_22_1 doi: 10.1109/JBHI.2019.2912935 – ident: e_1_2_9_4_1 doi: 10.1016/j.pacs.2022.100380 – ident: e_1_2_9_14_1 doi: 10.1117/1.3605696 |
| SSID | ssj0060353 |
| Score | 2.3555472 |
| Snippet | Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | e202300281 |
| SubjectTerms | Algorithms Blood vessels Computer Simulation Constraint modelling Data acquisition Experimental data Image Processing, Computer-Assisted - methods Image reconstruction Iterative methods model‐based iterative reconstruction multichannel autoencoder priors Phantoms, Imaging Photoacoustic effect photoacoustic tomography sparse view Tomography Tomography, X-Ray Computed - methods |
| Title | Accelerated model‐based iterative reconstruction strategy for sparse‐view photoacoustic tomography aided by multi‐channel autoencoder priors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.202300281 https://www.ncbi.nlm.nih.gov/pubmed/38010827 https://www.proquest.com/docview/2917371772 https://www.proquest.com/docview/2894721074 |
| Volume | 17 |
| WOSCitedRecordID | wos001114769700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1864-0648 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060353 issn: 1864-063X databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RpQd6ANpCG15ypUo9RYQkjpMj0K6gqmhVFWlvkR9jsUhsVskWiRs_AfET-SWMnWzKqodK9OY8nPg1M9_48Q3ARxEpx-mBIRbchikWUah4bsLCRkqrWMvowPpgE-LsLB-Nih9PTvG3_BD9hJuTDK-vnYBL1ez_IQ29VGN3eI8gNJlI8n-WYxq8fADLn38Oz7_NtXFG9_wm-zxLQzLHozlxYxTvL35h0TD9hTYXwau3PsO1_y_3Oqx2yJMdtkPlNSzh5A28esJH-BbuD7UmM-TYIwzzMXIebu-cnTOsZV8m1ci8C93TzrKmpbe9YYR-GamnukHK5BYc2PSimlWkcX3AMDarrjp6bOZoKQ1TN8xvZ6TX3fFjqheTv2eVY9Y0WLNpPa7qZgPOh19-HZ-EXdCGUCdUn9BmhRHIuTEmVoq7ZGoJBBDuM4VMrbZCJJQ0SieIWUS5UHMrclMgR5snmzCYVBN8D0wecBORB5qZTKbSUcVLhUjq28hIklsUwKd5j5XTlpujbFmY49K1ctm3cgA78w4tOxltypg81YS8WREH8KF_TNLllkzkBKl1SnJHU_KRCWcF8K4dCP2vEjLuBKBEALHv73-Uofx6dPq9v9p6TqZtWKF02s4A7cCAuhp34aW-no2beg9eiFG-143_RyXhDN4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hFgl6gPJom9KCkZA4RfXmnWOBrlpYFoRaaW-WH2OxSN2skm2l3vgJiJ_YX8LYyYauOFRCvTkPJ7bHM_ONH58B3uRcOU4PDLFMbZhgyUOVFiYsLVdaRVrygfWHTeTjcTGZlF-71YRuL0zLD9EPuDnN8PbaKbgbkD74yxr6Q03d7j3C0OQjKQBaT6gvUSdf__BteDZamuOMx56KclBkSUj-eLJkbuTRweoXVj3TP3BzFb169zN8fAcF34RHHfZkh21neQL3cPYUNm4wEj6D34dakyNy_BGG-VNyrn_-cp7OsJZ_mYwj80F0TzzLmpbg9ooR_mVkoOoGKZObcmDz79WiIpvrjwxji-q8I8hmjpjSMHXF_IJGet1tQKaKMXmxqBy3psGazetpVTfP4Wx4dPr-OOyObQh1TPUJbVaaHNPUGBMplbpkYgkGEPIzpUystnkeU9IoHSNmnHKhTm1emBJTtEW8BWuzaoY7wOQgNZxi0MxkMpGOLF4qRDLgRnJJgVEAb5ciE_OWnUO0PMyRcK0s-lYOYG8pUdFpaSMiilVjimfzKIDX_WPSLzdpImdIrSMoIE0oSiakFcB22xP6X8Xk3glC5QFEXuC3lEF8fHfypb_a_Z9Mr-DB8ennkRidjD-9gId0P2nHg_ZgjcSO-3BfXy6mTf2yU4M_1L4P5g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC5kI8EcokYTR2NsIZDTkN55zzEaFxPDGkICe2v6UU1WcGeZWQO5-RPEn-gvsbpndsziISDeeh4906-q-qofXwHs51w5Tg8MsUxtmGDJQ5UWJiwtV1pFWvKh9cEm8vG4mEzK8243oTsL0_JD9BNuTjK8vnYCjnNjD_-whn5RU3d6jzA02UhygNYSF0lmAGvHF6Ors6U6znjsqSiHRZaEZI8nS-ZGHh2ufmHVMv0FN1fRqzc_o8f_oeBPYLPDnuyoHSxP4QHOtmDjDiPhM_h5pDUZIscfYZiPkvPr-w9n6Qxr-ZdJOTLvRPfEs6xpCW5vGeFfRgqqbpAyuSUHNr-uFhXpXB8yjC2qrx1BNnPElIapW-Y3NNLr7gAyVYzJb4vKcWsarNm8nlZ18xyuRh8u338Mu7ANoY6pPqHNSpNjmhpjIqVSl0wswQBCfqaUidU2z2NKGqVjxIxTLtSpzQtTYoq2iLdhMKtm-AKYHKaGkw-amUwm0pHFS4VICtxILskxCuBg2WVi3rJziJaHORKulUXfygHsLntUdFLaiIh81Zj82TwK4G3_mOTLLZrIGVLrCHJIE_KSCWkFsNOOhP5XMZl3glB5AJHv8HvKIE7fnXzur17-S6Y3sH5-PBJnJ-NPr-AR3U7a6aBdGFCv42t4qG8W06be66TgN0tDD2E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+model-based+iterative+reconstruction+strategy+for+sparse-view+photoacoustic+tomography+aided+by+multi-channel+autoencoder+priors&rft.jtitle=Journal+of+biophotonics&rft.au=Song%2C+Xianlin&rft.au=Zhong%2C+Wenhua&rft.au=Li%2C+Zilong&rft.au=Peng%2C+Shuchong&rft.date=2024-01-01&rft.eissn=1864-0648&rft.volume=17&rft.issue=1&rft.spage=e202300281&rft_id=info:doi/10.1002%2Fjbio.202300281&rft_id=info%3Apmid%2F38010827&rft.externalDocID=38010827 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon |