Improvement of Differential Evolution Multiobjective Optimization Algorithm Based on Decomposition

Multi-objective optimization problem (MOP) is a challenging field of scientific research in real-life. The effective way to solve multi-objective optimization problems is Multi-objective Evolutionary Algorithm (MOEA). In this paper, enhancements to a Multi-objective Evolutionary algorithm MOEA/D-DE...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 1213; číslo 3; s. 32011 - 32017
Hlavní autoři: Han, Jiaxin, He, Manman, Wang, Xiaoxiao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.06.2019
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Multi-objective optimization problem (MOP) is a challenging field of scientific research in real-life. The effective way to solve multi-objective optimization problems is Multi-objective Evolutionary Algorithm (MOEA). In this paper, enhancements to a Multi-objective Evolutionary algorithm MOEA/D-DE are proposed. The proposed improvement points help to improve both population distribution and algorithmic local search capabilities. In an existing study, in order to better distribute the population, the Monte Carlo method was used for population initialization. Adaptive differential evolution operators are used to improve the local search ability of the algorithm. The algorithm was tested on widely used ZDT and DTLZ family test problems. The experimental results show that the proposed algorithm is better than MOEA/D-DE and has better performance than other excellent multi-objective algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1213/3/032011