Infusion: Internal Diffusion for Inpainting of Dynamic Textures and Complex Motion

Video inpainting is the task of filling a region in a video in a visually convincing manner It is very challenging due to the high dimensionality of the data and the temporal consistency required for obtaining convincing results. Recently, diffusion models have shown impressive results in modeling c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 44; číslo 2
Hlavní autori: Cherel, N., Almansa, A., Gousseau, Y., Newson, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.05.2025
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Video inpainting is the task of filling a region in a video in a visually convincing manner It is very challenging due to the high dimensionality of the data and the temporal consistency required for obtaining convincing results. Recently, diffusion models have shown impressive results in modeling complex data distributions, including images and videos. Such models remain nonetheless very expensive to train and to perform inference with, which strongly reduce their applicability to videos, and yields unreasonable computational loads. We show that in the case of video inpainting, thanks to the highly auto‐similar nature of videos, the training data of a diffusion model can be restricted to the input video and still produce very satisfying results. With this internal learning approach, where the training data is limited to a single video, our lightweight models perform very well with only half a million parameters, in contrast to the very large networks with billions of parameters typically found in the literature. We also introduce a new method for efficient training and inference of diffusion models in the context of internal learning, by splitting the diffusion process into different learning intervals corresponding to different noise levels of the diffusion process. We show qualitative and quantitative results, demonstrating that our method reaches or exceeds state of the art performance in the case of dynamic textures and complex dynamic backgrounds.
AbstractList Video inpainting is the task of filling a region in a video in a visually convincing manner It is very challenging due to the high dimensionality of the data and the temporal consistency required for obtaining convincing results. Recently, diffusion models have shown impressive results in modeling complex data distributions, including images and videos. Such models remain nonetheless very expensive to train and to perform inference with, which strongly reduce their applicability to videos, and yields unreasonable computational loads. We show that in the case of video inpainting, thanks to the highly auto‐similar nature of videos, the training data of a diffusion model can be restricted to the input video and still produce very satisfying results. With this internal learning approach, where the training data is limited to a single video, our lightweight models perform very well with only half a million parameters, in contrast to the very large networks with billions of parameters typically found in the literature. We also introduce a new method for efficient training and inference of diffusion models in the context of internal learning, by splitting the diffusion process into different learning intervals corresponding to different noise levels of the diffusion process. We show qualitative and quantitative results, demonstrating that our method reaches or exceeds state of the art performance in the case of dynamic textures and complex dynamic backgrounds.
Author Gousseau, Y.
Almansa, A.
Newson, A.
Cherel, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Cherel
  fullname: Cherel, N.
  organization: LTCI, Télécom Paris, Institut Polytechnique de Paris
– sequence: 2
  givenname: A.
  surname: Almansa
  fullname: Almansa, A.
  organization: MAP5, CNRS & Université Paris Cité
– sequence: 3
  givenname: Y.
  surname: Gousseau
  fullname: Gousseau, Y.
  organization: LTCI, Télécom Paris, Institut Polytechnique de Paris
– sequence: 4
  givenname: A.
  surname: Newson
  fullname: Newson, A.
  organization: ISIR, Sorbonne Université
BookMark eNp1kN9LwzAQx4NMcJs--B8EfPKhW5K2SeubdG4OJoLM55Dlx-jokpq0uP33ZtZXD4477j7fg_tOwMg6qwG4x2iGY8zl3swYQgxdgTHOKEsKmpcjMEY49gzl-Q2YhHBACGWM5mPwsbamD7WzT3BtO-2taOCiNsMMGufjuBW17Wq7h87AxdmKYy3hVp-63usAhVWwcse20Sf45rqougXXRjRB3_3VKfhcvmyr12TzvlpXz5tEpqRASSbpboeNxIZqjXJR4kwQQklMxRRLkS6QlFqoMsWK5LpMy6IgSFGiFBUpSafgYbjbevfV69Dxg-svDwQet5iVmBZppB4HSnoXgteGt74-Cn_mGPGLZTxaxn8ti-x8YL_rRp__B3m1Wg6KH5LFbkU
Cites_doi 10.1109/ICCV51070.2023.00961
10.1109/ICCV51070.2023.00684
10.1109/CVPR.2019.00594
10.1109/CVPR.2005.38
10.1109/CVPR52688.2022.01704
10.1109/CVPR.2019.00384
10.1109/CVPR.2018.00577
10.1109/CVPR52688.2022.00589
10.1109/CVPR.2018.00701
10.1109/CVPR52729.2023.02148
10.1007/978‐3‐030‐58610‐2_42
10.1109/ICCV.2009.5459159
10.1109/CVPR52729.2023.02161
10.1109/ICCV.2019.00281
10.1109/CVPR.2018.00068
10.1109/CVPR52733.2024.00684
10.1137/140954933
10.1109/CVPR52688.2022.00350
10.1145/3478513.3480546
10.1109/ICCV51070.2023.02106
10.1109/TPAMI.2022.3204461
10.1109/ICCV51070.2023.02121
10.1109/ICCV48922.2021.01431
10.1007/978‐3‐030‐01264‐9_20
10.1109/CVPR52688.2022.01117
10.1007/978‐3‐031‐19797‐0_5
10.1109/CVPR46437.2021.00374
10.1145/3528233.3530757
10.1109/ICCV.2019.00467
10.1145/2980179.2982398
10.1111/j.1467-8659.2012.03000.x
10.1109/CVPR52729.2023.02155
10.1145/3581783.3612200
10.1109/CVPR.2018.00652
10.1609/aaai.v37i8.26094
10.24963/ijcai.2023/199
10.1109/CVPR52729.2023.01770
10.1109/CVPR.2018.00984
10.1109/ICCV48922.2021.01378
10.1007/s41095-019-0145-0
10.1109/TPAMI.2007.60
ContentType Journal Article
Copyright 2025 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
2025 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
– notice: 2025 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.70070
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage n/a
ExternalDocumentID 10_1111_cgf_70070
CGF70070
Genre article
GrantInformation_xml – fundername: MISTIC
  funderid: ANR‐19‐CE40‐005
– fundername: Futur et Ruptures
– fundername: Institut Mines Télécom, Fondation Mines‐Télécom, and l'Institut Carnot TSN
– fundername: French Research Agency
– fundername: PostProdLEAP
  funderid: ANR‐19‐CE23‐0027‐01
– fundername: IDeGeN
  funderid: ANR‐21‐CE23‐0024
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3280-4c6bb1fc1f6ee05a914a2262226d7d730e80ccead931d25e9398820d62dd6a323
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470166000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Wed Aug 13 05:54:40 EDT 2025
Sat Nov 29 07:41:50 EST 2025
Mon Jul 21 09:51:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3280-4c6bb1fc1f6ee05a914a2262226d7d730e80ccead931d25e9398820d62dd6a323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.70070
PQID 3231791683
PQPubID 30877
PageCount 14
ParticipantIDs proquest_journals_3231791683
crossref_primary_10_1111_cgf_70070
wiley_primary_10_1111_cgf_70070_CGF70070
PublicationCentury 2000
PublicationDate May 2025
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2025
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2019; 5
2210
2023; 37
2009
2023; 1
2020; 33
2024
2012; 31
2016; 35
2007; 29
2017; 30
2021; 34
2023
2022
2021
2020
2022; 13678
2018; 11218
2019
2018
2015
2211
2014; 7
2021; 40
2018; 31
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_26_3
e_1_2_7_28_2
Kulikov V. (e_1_2_7_25_2) 2023
Zhang K. (e_1_2_7_57_2) 2022
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_39_2
Ho J. (e_1_2_7_17_2) 2020
Nikankin Y. (e_1_2_7_34_2) 2023
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_10_2
e_1_2_7_44_2
Dhariwal P. (e_1_2_7_11_2) 2021
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
Vaswani A. (e_1_2_7_49_2) 2017
Gur S. (e_1_2_7_12_2) 2020
Rombach R. (e_1_2_7_37_2) 2022
Wang T.‐C. (e_1_2_7_50_2) 2018
Sohl‐Dickstein J. (e_1_2_7_46_2) 2015
Nichol A. Q. (e_1_2_7_33_2) 2021
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – start-page: 14040
  year: 2021
  end-page: 14049
– volume: 5
  start-page: 267
  issue: 3
  year: 2019
  end-page: 291
  article-title: Object removal from complex videos using a few annotations
  publication-title: Comput. Vis. Media
– start-page: 9446
  year: 2018
  end-page: 9454
– start-page: 11461
  year: 2022
  end-page: 11471
– start-page: 23206
  year: 2023
  end-page: 23217
– start-page: 17920
  year: 2023
  end-page: 17930
  article-title: SinDDM: A Single Image Denoising Diffusion Model
– start-page: 14559
  year: 2021
  end-page: 14568
  article-title: Internal Video Inpainting by Implicit Long‐range Propagation
– start-page: 10684
  year: 2022
  end-page: 10695
  article-title: High‐Resolution Image Synthesis With Latent Diffusion Models
– volume: 40
  start-page: 210:1
  issue: 6
  year: 2021
  end-page: 210:12
  article-title: Layered neural atlases for consistent video editing
  publication-title: ACM Transactions on Graphics
– start-page: 1
  year: 2022
  end-page: 10
  article-title: Palette: Image‐to‐Image Diffusion Models
– year: 2021
– year: 2024
– volume: 35
  start-page: 1
  issue: 6
  year: 2016
  end-page: 11
  article-title: Temporally coherent completion of dynamic video
  publication-title: ACM Transactions on Graphics
– year: 2018
– start-page: 2720
  year: 2019
  end-page: 2729
  article-title: An Internal Learning Approach to Video Inpainting
– volume: 37
  start-page: 9117
  issue: 8
  year: 2023
  end-page: 9125
  article-title: VIDM: Video Implicit Diffusion Models
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 7441
  year: 2023
  end-page: 7451
– volume: 1
  start-page: 1795
  year: 2023
  end-page: 1803
  article-title: Pyramid Diffusion Models for Low‐light Image Enhancement. In
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  article-title: Denoising Diffusion Probabilistic Models
– start-page: 18456
  year: 2023
  end-page: 18466
– year: 2022
– start-page: 4569
  year: 2019
  end-page: 4579
  article-title: SinGAN: Learning a Generative Model From a Single Natural Image
– start-page: 6703
  year: 2018
  end-page: 6712
– start-page: 713
  year: 2020
  end-page: 729
  article-title: Flow‐edge Guided Video Completion
– volume: 31
  start-page: 219
  issue: 2pt1
  year: 2012
  end-page: 228
  article-title: How Not to Be Seen — Object Removal from Videos of Crowded Scenes
  publication-title: Computer Graphics Forum
– start-page: 60
  end-page: 65
– volume: 13678
  start-page: 74
  year: 2022
  end-page: 90
  article-title: Flow‐Guided Transformer for Video Inpainting
– start-page: 22563
  year: 2023
  end-page: 22575
– start-page: 17541
  year: 2022
  end-page: 17550
  article-title: Towards An End‐to‐End Framework for Flow‐Guided Video Inpainting
– start-page: 1
  year: 2022
  end-page: 21
– start-page: 3511
  year: 2022
  end-page: 3520
– start-page: 1
  year: 2022
  end-page: 14
– volume: 31
  start-page: 1144
  year: 2018
  end-page: 1156
  article-title: Video‐to‐Video Synthesis
– start-page: 10443
  year: 2023
  end-page: 10452
  article-title: ProPainter: Improving Propagation and Transformer for Video Inpainting
– start-page: 23040
  year: 2023
  end-page: 23050
– start-page: 7162
  year: 2024
  end-page: 7172
  article-title: AVID: Any‐Length Video Inpainting with Diffusion Model
– start-page: 586
  year: 2018
  end-page: 595
  article-title: The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
– start-page: 3190
  year: 2023
  end-page: 3199
  article-title: Uni‐paint: A Unified Framework for Multimodal Image Inpainting with Pretrained Diffusion Model
– start-page: 5982
  year: 2022
  end-page: 5991
– start-page: 22500
  year: 2023
  end-page: 22510
– start-page: 151
  year: 2009
  end-page: 158
– start-page: 6228
  year: 2018
  end-page: 6237
  article-title: The Perception‐Distortion Tradeoff
– year: 2211
– start-page: 8162
  year: 2021
  end-page: 8171
  article-title: Improved Denoising Diffusion Probabilistic Models
– start-page: 3741
  year: 2021
  end-page: 3752
  article-title: Stochastic Image‐to‐Video Synthesis using ciNNs
– start-page: 5792
  year: 2019
  end-page: 5801
– start-page: 74
  year: 2022
  end-page: 90
  article-title: Flow‐guided transformer for video inpainting
– start-page: 3718
  year: 2019
  end-page: 3727
– volume: 30
  start-page: 5998
  year: 2017
  end-page: 6008
  article-title: Attention is All you Need
– volume: 11218
  start-page: 334
  year: 2018
  end-page: 351
  article-title: A New Large Scale Dynamic Texture Dataset with Application to ConvNet understanding
– volume: 33
  start-page: 16761
  year: 2020
  end-page: 16772
  article-title: Hierarchical Patch VAE‐GAN: Generating Diverse Videos from a Single Sample
– volume: 29
  start-page: 463
  issue: 3
  year: 2007
  end-page: 476
  article-title: Space‐Time Completion of Video
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 2256
  year: 2015
  end-page: 2265
  article-title: Deep Unsupervised Learning using Nonequilibrium Thermodynamics
– volume: 7
  start-page: 1993
  issue: 4
  year: 2014
  end-page: 2019
  article-title: Video Inpainting of Complex Scenes
  publication-title: SIAM Journal on Imaging Sciences
– year: 2023
– year: 2210
– year: 2023
  article-title: Sinfusion: Training diffusion models on a single image or video
– volume: 34
  start-page: 8780
  year: 2021
  end-page: 8794
  article-title: Diffusion Models Beat GANs on Image Synthesis
– ident: e_1_2_7_61_2
  doi: 10.1109/ICCV51070.2023.00961
– ident: e_1_2_7_16_2
  doi: 10.1109/ICCV51070.2023.00684
– ident: e_1_2_7_24_2
  doi: 10.1109/CVPR.2019.00594
– ident: e_1_2_7_2_2
  doi: 10.1109/CVPR.2005.38
– ident: e_1_2_7_30_2
  doi: 10.1109/CVPR52688.2022.01704
– ident: e_1_2_7_52_2
  doi: 10.1109/CVPR.2019.00384
– ident: e_1_2_7_55_2
  doi: 10.1109/CVPR.2018.00577
– ident: e_1_2_7_59_2
  doi: 10.1109/CVPR52688.2022.00589
– ident: e_1_2_7_47_2
  doi: 10.1109/CVPR.2018.00701
– ident: e_1_2_7_53_2
  doi: 10.1109/CVPR52729.2023.02148
– start-page: 8162
  volume-title: Proceedings of the 38th International Conference on Machine Learning
  year: 2021
  ident: e_1_2_7_33_2
– start-page: 1144
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: e_1_2_7_50_2
– ident: e_1_2_7_13_2
  doi: 10.1007/978‐3‐030‐58610‐2_42
– ident: e_1_2_7_15_2
– ident: e_1_2_7_36_2
  doi: 10.1109/ICCV.2009.5459159
– ident: e_1_2_7_7_2
  doi: 10.1109/CVPR52729.2023.02161
– ident: e_1_2_7_62_2
  doi: 10.1109/ICCV.2019.00281
– ident: e_1_2_7_45_2
– volume-title: International Conference on Machine Learning
  year: 2023
  ident: e_1_2_7_34_2
– ident: e_1_2_7_42_2
– ident: e_1_2_7_60_2
  doi: 10.1109/CVPR.2018.00068
– ident: e_1_2_7_63_2
  doi: 10.1109/CVPR52733.2024.00684
– ident: e_1_2_7_32_2
  doi: 10.1137/140954933
– ident: e_1_2_7_39_2
  doi: 10.1109/CVPR52688.2022.00350
– ident: e_1_2_7_23_2
  doi: 10.1145/3478513.3480546
– ident: e_1_2_7_8_2
  doi: 10.1109/ICCV51070.2023.02106
– ident: e_1_2_7_26_3
– start-page: 8780
  volume-title: Advances in Neural Information Processing Systems
  year: 2021
  ident: e_1_2_7_11_2
– ident: e_1_2_7_43_2
  doi: 10.1109/TPAMI.2022.3204461
– ident: e_1_2_7_5_2
– ident: e_1_2_7_9_2
  doi: 10.1109/ICCV51070.2023.02121
– start-page: 10684
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2022
  ident: e_1_2_7_37_2
– start-page: 5998
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: e_1_2_7_49_2
– ident: e_1_2_7_35_2
  doi: 10.1109/ICCV48922.2021.01431
– ident: e_1_2_7_19_2
– ident: e_1_2_7_21_2
  doi: 10.1007/978‐3‐030‐01264‐9_20
– ident: e_1_2_7_27_2
– ident: e_1_2_7_29_2
  doi: 10.1109/CVPR52688.2022.01117
– ident: e_1_2_7_58_2
  doi: 10.1007/978‐3‐031‐19797‐0_5
– start-page: 16761
  volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: e_1_2_7_12_2
– ident: e_1_2_7_10_2
  doi: 10.1109/CVPR46437.2021.00374
– ident: e_1_2_7_40_2
  doi: 10.1145/3528233.3530757
– ident: e_1_2_7_41_2
  doi: 10.1109/ICCV.2019.00467
– ident: e_1_2_7_6_2
– start-page: 17920
  volume-title: Proceedings of the 40th International Conference on Machine Learning
  year: 2023
  ident: e_1_2_7_25_2
– ident: e_1_2_7_18_2
  doi: 10.1145/2980179.2982398
– ident: e_1_2_7_65_2
– ident: e_1_2_7_20_2
– ident: e_1_2_7_14_2
  doi: 10.1111/j.1467-8659.2012.03000.x
– ident: e_1_2_7_38_2
  doi: 10.1109/CVPR52729.2023.02155
– ident: e_1_2_7_54_2
  doi: 10.1145/3581783.3612200
– ident: e_1_2_7_4_2
  doi: 10.1109/CVPR.2018.00652
– ident: e_1_2_7_31_2
  doi: 10.1609/aaai.v37i8.26094
– ident: e_1_2_7_64_2
  doi: 10.24963/ijcai.2023/199
– ident: e_1_2_7_56_2
  doi: 10.1109/CVPR52729.2023.01770
– ident: e_1_2_7_48_2
  doi: 10.1109/CVPR.2018.00984
– ident: e_1_2_7_3_2
– start-page: 6840
  volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: e_1_2_7_17_2
– start-page: 2256
  volume-title: Proceedings of the 32nd International Conference on Machine Learning
  year: 2015
  ident: e_1_2_7_46_2
– ident: e_1_2_7_22_2
– start-page: 74
  volume-title: European Conference on Computer Vision
  year: 2022
  ident: e_1_2_7_57_2
– ident: e_1_2_7_28_2
  doi: 10.1109/ICCV48922.2021.01378
– ident: e_1_2_7_26_2
  doi: 10.1007/s41095-019-0145-0
– ident: e_1_2_7_51_2
  doi: 10.1109/TPAMI.2007.60
– ident: e_1_2_7_44_2
SSID ssj0004765
Score 2.4346557
Snippet Video inpainting is the task of filling a region in a video in a visually convincing manner It is very challenging due to the high dimensionality of the data...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms CCS Concepts
Computing methodologies → Image processing
Diffusion models
Inference
Learning
Noise levels
Parameters
Video
Title Infusion: Internal Diffusion for Inpainting of Dynamic Textures and Complex Motion
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.70070
https://www.proquest.com/docview/3231791683
Volume 44
WOSCitedRecordID wos001470166000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1q60EPfovVKot48BJJsskm0ZO0RoUqUqp4C-nORgolLf0Qf76zm0TrQRC8hSXZhMm8mbfD7huAMyeTnkAvtCjXouX5ijDnRNLKeGajy6WDRkvvpRs8Poavr9FTDa6qszCFPsRXwU0jw8RrDfB0MFsCuXzLLgKtVrMCDZf81qtDo9OLn7vfxyID4VfS3lo0phQW0ht5vh7-mY6-OeYyUzWpJt7810duwUbJMNl14RLbUFP5Dqwv6Q7uQu8-zxa6THbJyorgiHWGWTHGiMbS8CQdmiYSbJyxTtG2nvUpki9ofc7SHJmOJCP1wR5MH6A9eI5v-u07q2yuYEnuhrblSTEY0J9yMqGU7aeR46VExYguCAyQcK9CW0rys4g76Poq4hGRcRuFiyhS7vJ9qOfjXB0AQ6KIwvdpqkB6aGM44MhDz0eFtkhV2oTTysbJpNDQSKq1BxkoMQZqQquyflLCaJbQa7R8qgh5E86NnX-fIGnfxubi8O-3HsGaq_v5mg2MLajPpwt1DKvyfT6cTU9Kf_oEOEjM-A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1qFdSD32L9XMSDl0iSTTaJeJHW2mItIlV6C-nORgolSmvFn-_sJqn1IAjewpJswmTezNth9w3AmZNKT6AXWpRr0fJ8RZhzImmlPLXR5dJBo6X33Am63bDfjx4qcFWehcn1IWYFN40ME681wHVBeg7l8iW9CLRczQIseuRGfhUWG4_Np873uchA-KW2t1aNKZSF9E6e2cM_89E3yZynqibXNNf_95UbsFZwTHadO8UmVFS2BatzyoPb8NjO0qkulF2yoiY4Yo1hmo8xIrI0_JYMTRsJ9pqyRt64nvUolk9phc6SDJmOJSP1ye5NJ6AdeGre9Ootq2ivYEnuhrblSTEY0L9yUqGU7SeR4yVExogwCAyQkK9CW0rytIg76Poq4hHRcRuFiygS7vJdqGavmdoDhkQShe_TVIH00MZwwJGHno8KbZGopAanpZHjt1xFIy5XH2Sg2BioBoel-eMCSJOYXqMFVEXIa3BuDP37BHH9tmku9v9-6wkst3r3nbjT7t4dwIqru_ua7YyHUH0fT9URLMmP9-FkfFw41xeLVNDo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa7PIB68VNqmTVvxIq5VcV2WZRVvpZtJZEHqoq74852krbseBMFbCW1apvPNfBmSbwCOPC0DgUHsUK5FJwgVYc5LpKO5dtHn0kOrpffQitrt-PEx6UzBWX0WptSH-C64GWTYeG0AroaoJ1Aun_RJZORqpmE2CBNBsJxtdtP71vhcZCTCWtvbqMZUykJmJ8_3wz_z0ZhkTlJVm2vS5f995QosVRyTnZdOsQpTqliDxQnlwXXo3hR6ZAplp6yqCT6z5kCXY4yILA0P84FtI8FeNGuWjetZj2L5iFboLC-QmVjyrD7Zne0EtAH36WXv4tqp2is4kvux6wRS9Pv0rzwtlHLDPPGCnMgYEQaBERLyVexKSZ6WcA_9UCU8ITruovARRc59vgkzxUuhtoAhkUQRhjRVJAN0Me5z5HEQokJX5CpvwGFt5GxYqmhk9eqDDJRZAzVgtzZ_VgHpLaPXGAFVEfMGHFtD_z5BdnGV2ovtv996APOdZpq1btq3O7Dgm-a-djfjLsy8v47UHszJj_fB2-t-5VtfW1PQYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infusion%3A+Internal+Diffusion+for+Inpainting+of+Dynamic+Textures+and+Complex+Motion&rft.jtitle=Computer+graphics+forum&rft.au=Cherel%2C+N.&rft.au=Almansa%2C+A.&rft.au=Gousseau%2C+Y.&rft.au=Newson%2C+A.&rft.date=2025-05-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=44&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fcgf.70070&rft.externalDBID=10.1111%252Fcgf.70070&rft.externalDocID=CGF70070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon