Solution of a model describing biological species living together using the variational iteration method

In this work, a system of two nonlinear integro-differential equations which arises in biology is considered and the well-known variational iteration method is implemented for finding the solution of this system. This method is based on the incorporation of a general Lagrange multiplier in the const...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical and computer modelling Ročník 48; číslo 5; s. 685 - 699
Hlavní autoři: Shakeri, Fatemeh, Dehghan, Mehdi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.09.2008
Elsevier Science
Témata:
ISSN:0895-7177, 1872-9479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work, a system of two nonlinear integro-differential equations which arises in biology is considered and the well-known variational iteration method is implemented for finding the solution of this system. This method is based on the incorporation of a general Lagrange multiplier in the construction of correction functional for the equation. This technique reduces the volume of calculations by not requiring discretization of the variables, linearization or small perturbations and constructs a sequence which converges to the exact solution rapidly. Also a numerical technique based on the pseudospectral Legendre method is developed to solve the model. Several test problems are given and the results are compared with Adomian decomposition method and the variational iteration technique.
AbstractList In this work, a system of two nonlinear integro-differential equations which arises in biology is considered and the well-known variational iteration method is implemented for finding the solution of this system. This method is based on the incorporation of a general Lagrange multiplier in the construction of correction functional for the equation. This technique reduces the volume of calculations by not requiring discretization of the variables, linearization or small perturbations and constructs a sequence which converges to the exact solution rapidly. Also a numerical technique based on the pseudospectral Legendre method is developed to solve the model. Several test problems are given and the results are compared with Adomian decomposition method and the variational iteration technique.
Author Dehghan, Mehdi
Shakeri, Fatemeh
Author_xml – sequence: 1
  givenname: Fatemeh
  surname: Shakeri
  fullname: Shakeri, Fatemeh
– sequence: 2
  givenname: Mehdi
  surname: Dehghan
  fullname: Dehghan, Mehdi
  email: mdehghan@aut.ac.ir
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20572436$$DView record in Pascal Francis
BookMark eNp9kD1PwzAQhi1UJNrCD2Dzwpjgc9I4FhOq-JIqMQCz5Trn1lUSV3ZaiX-P2yIGhk4-657ndPdOyKj3PRJyCywHBtX9Ju9Ml3PGRA6QM-AXZAy14JkshRyRMavlLBMgxBWZxLhhjM0kq8dk_eHb3eB8T72lmna-wZY2GE1wS9ev6NL51q-c0S2NWzQOI23d_tAZ_AqHNQa6i8fvGuleB6cPwxLtBgzHmnYJ8801ubS6jXjz-07J1_PT5_w1W7y_vM0fF5kpuBgyC1hXWNmGL5esKKQBLG0pwWhkKGxjJAcNEkvkRYmzUuqqqi2r0FSlaRCKKbk7zd3qmLa2QffGRbUNrtPhW3E2E7wsqsTBiTPBxxjQ_iHA1CFStVEpUnWIVAGoFGlyxD_HuOF45BC0a8-aDycT0-l7h0HFlGVvsHEBzaAa787YPxwrlZI
CitedBy_id crossref_primary_10_1002_cnm_1154
crossref_primary_10_1016_j_apm_2015_08_017
crossref_primary_10_1002_cnm_1399
crossref_primary_10_1177_1077546311408467
crossref_primary_10_1002_cnm_1315
crossref_primary_10_1007_s00009_015_0662_8
crossref_primary_10_1016_j_apnum_2021_06_012
crossref_primary_10_1016_j_cnsns_2011_03_039
crossref_primary_10_1007_s40819_017_0473_7
crossref_primary_10_1002_num_20482
crossref_primary_10_1016_j_amc_2015_08_031
crossref_primary_10_1002_num_20489
crossref_primary_10_1016_j_camwa_2009_03_017
crossref_primary_10_3390_math11183840
crossref_primary_10_1002_cnm_1361
crossref_primary_10_1002_cnm_1166
crossref_primary_10_1016_j_cam_2015_09_011
crossref_primary_10_1080_00207161003706521
crossref_primary_10_1016_j_camwa_2009_11_001
crossref_primary_10_1108_09615531111105362
crossref_primary_10_1108_09615531211255734
crossref_primary_10_1515_IJNSNS_2009_10_11_12_1377
crossref_primary_10_1002_num_20537
crossref_primary_10_1007_s00521_015_1895_y
crossref_primary_10_1007_s12206_013_0301_x
crossref_primary_10_1016_j_cpc_2010_03_014
crossref_primary_10_1002_cnm_1293
crossref_primary_10_3390_math11143132
crossref_primary_10_1016_j_fss_2016_04_004
crossref_primary_10_1016_j_amc_2015_01_063
crossref_primary_10_1080_00207160802545908
crossref_primary_10_1002_num_20460
crossref_primary_10_1016_j_camwa_2009_03_083
crossref_primary_10_1108_09615531211208042
crossref_primary_10_1016_j_apm_2014_12_024
crossref_primary_10_1007_s12591_018_0417_7
crossref_primary_10_1080_09720502_2021_1966949
crossref_primary_10_1016_j_camwa_2009_03_081
crossref_primary_10_1080_00207160_2021_1938012
crossref_primary_10_1002_cnm_1308
crossref_primary_10_1108_EC_01_2025_0080
crossref_primary_10_1016_j_mcm_2011_05_013
crossref_primary_10_1080_00207160802322357
crossref_primary_10_1080_00207160802562564
crossref_primary_10_1007_s40819_018_0578_7
crossref_primary_10_1016_j_camwa_2009_03_008
crossref_primary_10_1007_s00521_014_1816_5
crossref_primary_10_1002_num_20511
crossref_primary_10_1016_j_apm_2012_02_041
Cites_doi 10.1016/j.camwa.2006.12.053
10.2528/PIER07090403
10.1016/j.amc.2004.07.020
10.1016/j.chaos.2007.02.012
10.1016/j.physleta.2006.09.101
10.1016/S0096-3003(01)00043-1
10.1016/j.na.2006.03.021
10.1016/j.chaos.2006.06.088
10.1016/j.cam.2006.07.023
10.1016/0022-247X(88)90170-9
10.1002/num.20019
10.1515/IJNSNS.2006.7.4.461
10.1016/j.cam.2007.03.006
10.1016/S1007-5704(99)90063-1
10.1007/s11071-006-9194-x
10.1016/j.camwa.2006.12.058
10.1016/j.chaos.2005.08.180
10.1016/j.cam.2006.07.013
10.1016/j.camwa.2006.12.061
10.1088/0031-8949/75/4/031
10.1016/S0045-7825(98)00108-X
10.1016/j.amc.2007.03.083
10.1016/j.apnum.2004.02.002
10.1155/MPE/2006/65379
10.1002/num.20071
10.1016/j.matcom.2005.10.001
10.1016/j.cam.2006.07.029
10.1016/S0096-3003(99)00104-6
10.1016/j.cam.2006.07.011
10.1016/j.chaos.2005.10.100
10.1016/j.cam.2006.07.026
10.1002/num.20177
10.1016/j.apm.2006.10.025
10.1016/j.amc.2005.04.082
10.1088/0031-8949/74/3/003
10.1016/j.amc.2006.10.009
10.1016/j.mcm.2004.07.010
10.1016/j.camwa.2006.12.055
10.1108/03684920710749857
10.1142/S0217979206033796
10.1016/j.chaos.2005.08.044
10.1016/j.chaos.2006.06.080
10.1016/j.chaos.2005.11.010
10.1016/j.cam.2006.07.014
ContentType Journal Article
Copyright 2007 Elsevier Ltd
2008 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: 2008 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.mcm.2007.11.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1872-9479
EndPage 699
ExternalDocumentID 20572436
10_1016_j_mcm_2007_11_012
S0895717707003524
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
29M
4.4
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABFNM
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SSB
SSD
SST
SSW
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
XSW
YNT
YQT
ZMT
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
IQODW
SSH
ID FETCH-LOGICAL-c327t-f1e86e6fd2bb0339c1e4f491cae0e7fdc921a19e4e234e549a668f06ec64cde13
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257950200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0895-7177
IngestDate Mon Jul 21 09:17:05 EDT 2025
Sat Nov 29 06:30:23 EST 2025
Tue Nov 18 22:32:45 EST 2025
Fri Feb 23 02:25:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Variational iteration method
Mathematical biology
Integro-differential equation
The equilibrium state of two species living together
Pseudospectral Legendre method
Adomian decomposition method
Differential equation
Decomposition method
Optimization method
Iteration
Difference equation
Implementation
Non linear equation
Lagrange multiplier
Mathematical model
Integrodifferential equation
Computer aided analysis
Linearization
Mathematical programming
Transcendental equation
Recurrence relation
Functional equation
Non linear system
Discretization method
Exact solution
Numerical analysis
Scientific computation
Pseudospectral method
Applied mathematics
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-f1e86e6fd2bb0339c1e4f491cae0e7fdc921a19e4e234e549a668f06ec64cde13
OpenAccessLink https://dx.doi.org/10.1016/j.mcm.2007.11.012
PageCount 15
ParticipantIDs pascalfrancis_primary_20572436
crossref_primary_10_1016_j_mcm_2007_11_012
crossref_citationtrail_10_1016_j_mcm_2007_11_012
elsevier_sciencedirect_doi_10_1016_j_mcm_2007_11_012
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Mathematical and computer modelling
PublicationYear 2008
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Dehghan (b46) 2007; 36
Ganji, Jannatabadi, Mohseni (b15) 2007; 207
Babolian, Biazar (b38) 2002; 129
He (b1) 1998; 167
Saha Ray, Bera (b29) 2005; 167
Dehghan, Shakeri (b32) 2008; 78
Tatari, Dehghan (b12) 2007; 362
Adomian (b37) 1988; 135
Batiha, Noorani, Hashim (b20) 2007; 54
Dehghan (b44) 2006; 71
Cveticanin (b31) 2006; 30
Shakeri, Dehghan (b33) 2007; 75
Wazwaz (b8) 2007; 193
Sweilam (b18) 2007; 207
Momoniat, Selway, Jina (b27) 2007; 66
Dehghan, Tatari (b4) 2006; 74
Xu (b23) 2007; 54
He (b30) 2006; 20
Batiha, Noorani, Hashim (b11) 2008; 36
Słota (b6) 2007; 54
Dehghan, Tatari (b26) 2006
Sweilam (b7) 2007; 207
Javidi, Golbabai (b14) 2008; 36
Saadatmandi, Dehghan (b35) 2007; 23
Adomian (b36) 1994
Dehghan (b43) 2006; 7
Dehghan (b41) 2005; 41
Shakeri, Dehghan (b9) 2008; 51
Wazwaz (b25) 2007; 188
He (b2) 2000; 114
He (b3) 1999; 4
Odibat, Momani (b22) 2008; 32
Canuto, Hussaini, Quarteroni, Zhang (b34) 1988
Dehghan (b40) 2005; 52
Lu (b17) 2007; 207
L.M.B. Assas, Variational iteration method for solving coupled-KdV equations, Chaos Solitons Fractals (2007) (in press)
A.J. Jerri, Introduction to integral equations with applications, 1999
Sweilam (b24) 2007; 54
Saha Ray, Bera (b28) 2006; 174
Dehghan (b47) 2007; 32
M. Dehghan, F. Shakeri, Application of He’s variational iteration method for solving the Cauchy reaction-diffusion problem, J. Comput. Appl. Math. (2007) (in press)
Abbasbandy (b5) 2007; 207
Abulwafa, Abdou, Mahmoud (b21) 2006; 29
Tian, Yin (b10) 2007; 207
He, Wu (b13) 2006; 29
Dehghan (b42) 2005; 21
Dehghan (b45) 2006; 22
Ganji (10.1016/j.mcm.2007.11.012_b15) 2007; 207
Abulwafa (10.1016/j.mcm.2007.11.012_b21) 2006; 29
Canuto (10.1016/j.mcm.2007.11.012_b34) 1988
Xu (10.1016/j.mcm.2007.11.012_b23) 2007; 54
Saadatmandi (10.1016/j.mcm.2007.11.012_b35) 2007; 23
Saha Ray (10.1016/j.mcm.2007.11.012_b29) 2005; 167
He (10.1016/j.mcm.2007.11.012_b2) 2000; 114
Odibat (10.1016/j.mcm.2007.11.012_b22) 2008; 32
Wazwaz (10.1016/j.mcm.2007.11.012_b25) 2007; 188
Sweilam (10.1016/j.mcm.2007.11.012_b24) 2007; 54
Adomian (10.1016/j.mcm.2007.11.012_b36) 1994
Sweilam (10.1016/j.mcm.2007.11.012_b18) 2007; 207
Batiha (10.1016/j.mcm.2007.11.012_b20) 2007; 54
Momoniat (10.1016/j.mcm.2007.11.012_b27) 2007; 66
Słota (10.1016/j.mcm.2007.11.012_b6) 2007; 54
Abbasbandy (10.1016/j.mcm.2007.11.012_b5) 2007; 207
Shakeri (10.1016/j.mcm.2007.11.012_b33) 2007; 75
Dehghan (10.1016/j.mcm.2007.11.012_b26) 2006
Tatari (10.1016/j.mcm.2007.11.012_b12) 2007; 362
Dehghan (10.1016/j.mcm.2007.11.012_b43) 2006; 7
Dehghan (10.1016/j.mcm.2007.11.012_b44) 2006; 71
He (10.1016/j.mcm.2007.11.012_b30) 2006; 20
Babolian (10.1016/j.mcm.2007.11.012_b38) 2002; 129
Javidi (10.1016/j.mcm.2007.11.012_b14) 2008; 36
10.1016/j.mcm.2007.11.012_b39
Dehghan (10.1016/j.mcm.2007.11.012_b45) 2006; 22
10.1016/j.mcm.2007.11.012_b16
Dehghan (10.1016/j.mcm.2007.11.012_b42) 2005; 21
Lu (10.1016/j.mcm.2007.11.012_b17) 2007; 207
Dehghan (10.1016/j.mcm.2007.11.012_b32) 2008; 78
Shakeri (10.1016/j.mcm.2007.11.012_b9) 2008; 51
Dehghan (10.1016/j.mcm.2007.11.012_b47) 2007; 32
Sweilam (10.1016/j.mcm.2007.11.012_b7) 2007; 207
Batiha (10.1016/j.mcm.2007.11.012_b11) 2008; 36
10.1016/j.mcm.2007.11.012_b19
Saha Ray (10.1016/j.mcm.2007.11.012_b28) 2006; 174
He (10.1016/j.mcm.2007.11.012_b3) 1999; 4
Dehghan (10.1016/j.mcm.2007.11.012_b41) 2005; 41
Dehghan (10.1016/j.mcm.2007.11.012_b4) 2006; 74
Dehghan (10.1016/j.mcm.2007.11.012_b40) 2005; 52
Tian (10.1016/j.mcm.2007.11.012_b10) 2007; 207
Cveticanin (10.1016/j.mcm.2007.11.012_b31) 2006; 30
Wazwaz (10.1016/j.mcm.2007.11.012_b8) 2007; 193
Adomian (10.1016/j.mcm.2007.11.012_b37) 1988; 135
Dehghan (10.1016/j.mcm.2007.11.012_b46) 2007; 36
He (10.1016/j.mcm.2007.11.012_b13) 2006; 29
He (10.1016/j.mcm.2007.11.012_b1) 1998; 167
References_xml – reference: L.M.B. Assas, Variational iteration method for solving coupled-KdV equations, Chaos Solitons Fractals (2007) (in press)
– volume: 193
  start-page: 455
  year: 2007
  end-page: 462
  ident: b8
  article-title: The variational iteration method for a reliable treatment of the linear and the nonlinear Goursat problem
  publication-title: Appl. Math. Comput.
– volume: 66
  start-page: 2315
  year: 2007
  end-page: 2324
  ident: b27
  article-title: Analysis of Adomian decomposition applied to a third-order ordinary differential equation from thin film flow
  publication-title: Nonlinear Analysis: Theory, Methods and Applications
– volume: 41
  start-page: 196
  year: 2005
  end-page: 213
  ident: b41
  article-title: Parameter determination in a partial differential equation from the overspecified data
  publication-title: Math. Comput. Modelling
– volume: 20
  start-page: 1141
  year: 2006
  end-page: 1199
  ident: b30
  article-title: Some asymptotic methods for strongly nonlinear equations
  publication-title: Internat. J. Modern Phys. B
– reference: A.J. Jerri, Introduction to integral equations with applications, 1999
– volume: 21
  start-page: 24
  year: 2005
  end-page: 40
  ident: b42
  article-title: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation
  publication-title: Numer. Methods Partial Differential Equations
– volume: 36
  start-page: 791
  year: 2007
  end-page: 805
  ident: b46
  article-title: Time-splitting procedures for the solution of the two-dimensional transport equation
  publication-title: Kybernetes
– volume: 36
  start-page: 309
  year: 2008
  end-page: 313
  ident: b14
  article-title: Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method
  publication-title: Chaos Solitons Fractals
– year: 1994
  ident: b36
  article-title: Solving Frontier Problems of Physics: The Decomposition Method
– volume: 54
  start-page: 1139
  year: 2007
  end-page: 1146
  ident: b6
  article-title: Direct and inverse one-phase Stefan problem solved by the variational iteration method
  publication-title: Comput. Math. Appl.
– volume: 74
  start-page: 310
  year: 2006
  end-page: 316
  ident: b4
  article-title: The use of He’s variational iteration method for solving the Fokker–Planck equation
  publication-title: Phys. Scr.
– volume: 29
  start-page: 313
  year: 2006
  end-page: 330
  ident: b21
  article-title: Solution of nonlinear coagulation problem with mass loss
  publication-title: Chaos Solitons Fractals
– volume: 75
  start-page: 551
  year: 2007
  end-page: 556
  ident: b33
  article-title: Inverse problem of diffusion equation by He’s homotopy perturbation method
  publication-title: Phys. Scripta
– start-page: 1
  year: 2006
  end-page: 12
  ident: b26
  article-title: The use of Adomian decomposition method for solving problems in calculus of variations
  publication-title: Math. Probl. Eng.
– volume: 207
  start-page: 92
  year: 2007
  end-page: 95
  ident: b17
  article-title: Variational iteration method for solving two-point boundary value problems
  publication-title: J. Comput. Appl. Math.
– volume: 51
  start-page: 89
  year: 2008
  end-page: 97
  ident: b9
  article-title: Numerical solution of the Klein–Gordon equation via He’s variational iteration method
  publication-title: Nonlinear Dyn.
– volume: 30
  start-page: 1221
  year: 2006
  end-page: 1230
  ident: b31
  article-title: Homotopy perturbation method for pure nonlinear differential equation
  publication-title: Chaos Solitons Fractals
– volume: 54
  start-page: 1086
  year: 2007
  end-page: 1091
  ident: b24
  article-title: Fourth order integro-differential equations using variational iteration method
  publication-title: Comput. Math. Appl.
– volume: 207
  start-page: 64
  year: 2007
  end-page: 72
  ident: b7
  article-title: Harmonic wave generation in non linear thermoelasticity by variational iteration method and Adomian’s method
  publication-title: J. Comput. Appl. Math.
– volume: 207
  start-page: 155
  year: 2007
  end-page: 163
  ident: b18
  article-title: Variational iteration method for solving cubic nonlinear Schrodinger equation
  publication-title: J. Comput. Appl. Math.
– volume: 78
  start-page: 361
  year: 2008
  end-page: 376
  ident: b32
  article-title: Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method
  publication-title: Progr. Electromag. Res.
– volume: 207
  start-page: 46
  year: 2007
  end-page: 52
  ident: b10
  article-title: Shock-peakon and shock-compacton solutions for
  publication-title: J. Comput. Appl. Math.
– volume: 188
  start-page: 485
  year: 2007
  end-page: 491
  ident: b25
  article-title: The variational iteration method for solving two forms of Blasius equation on a half-infinite domain
  publication-title: Appl. Math. Comput.
– volume: 23
  start-page: 282
  year: 2007
  end-page: 292
  ident: b35
  article-title: Numerical solution of the one-dimensional wave equation with an integral condition
  publication-title: Numer. Methods Partial Differential Equations
– volume: 114
  start-page: 115
  year: 2000
  end-page: 123
  ident: b2
  article-title: Variational iteration method for autonomous ordinary differential systems
  publication-title: Appl. Math. Comput.
– volume: 207
  start-page: 35
  year: 2007
  end-page: 45
  ident: b15
  article-title: Application of He’s variational iteration method to nonlinear Jaulent Miodek equations and comparing it with ADM
  publication-title: J. Comput. Appl. Math.
– volume: 54
  start-page: 903
  year: 2007
  end-page: 909
  ident: b20
  article-title: Variational iteration method for solving multispecies Lotka–Volterra equations
  publication-title: Comput. Math. Appl.
– volume: 22
  start-page: 220
  year: 2006
  end-page: 257
  ident: b45
  article-title: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications
  publication-title: Numer. Methods Partial Differential Equations
– volume: 362
  start-page: 401
  year: 2007
  end-page: 406
  ident: b12
  article-title: Solution of problems in calculus of variations via He’s variational iteration method
  publication-title: Phys. Lett. A
– volume: 52
  start-page: 39
  year: 2005
  end-page: 62
  ident: b40
  article-title: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications
  publication-title: Appl. Numer. Math.
– volume: 36
  start-page: 660
  year: 2008
  end-page: 663
  ident: b11
  article-title: Application of variational iteration method to the generalized Burgers–Huxley equation
  publication-title: Chaos Solitons Fractals
– volume: 32
  start-page: 28
  year: 2008
  end-page: 39
  ident: b22
  article-title: Numerical methods for nonlinear partial differential equations of fractional order
  publication-title: Appl. Math. Model.
– volume: 32
  start-page: 661
  year: 2007
  end-page: 675
  ident: b47
  article-title: The one-dimensional heat equation subject to a boundary integral specification
  publication-title: Chaos Solitons Fractals
– volume: 174
  start-page: 329
  year: 2006
  end-page: 336
  ident: b28
  article-title: Analytical solution of a fractional diffusion equation by Adomian decomposition method
  publication-title: Appl. Math. Comput.
– volume: 129
  start-page: 339
  year: 2002
  end-page: 343
  ident: b38
  article-title: Solving the problem of biological species living together by Adomian decomposition method
  publication-title: Appl. Math. Comput.
– year: 1988
  ident: b34
  article-title: Spectral Methods in Fluid Dynamic
– volume: 207
  start-page: 53
  year: 2007
  end-page: 58
  ident: b5
  article-title: An approximation solution of a nonlinear equation with Riemann Liouville’s fractional derivatives by He’s variational iteration method
  publication-title: J. Comput. Appl. Math.
– volume: 7
  start-page: 447
  year: 2006
  end-page: 450
  ident: b43
  article-title: Implicit collocation technique for heat equation with non-classic initial condition
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
– volume: 135
  start-page: 501
  year: 1988
  end-page: 544
  ident: b37
  article-title: A review of the decomposition method in applied mathematics, I
  publication-title: Math. Anal. Appl.
– volume: 71
  start-page: 16
  year: 2006
  end-page: 30
  ident: b44
  article-title: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
  publication-title: Math. Comput. Simulation
– volume: 54
  start-page: 1071
  year: 2007
  end-page: 1078
  ident: b23
  article-title: Variational iteration method for solving integral equations
  publication-title: Comput. Math. Appl.
– volume: 167
  start-page: 57
  year: 1998
  end-page: 68
  ident: b1
  article-title: Approximate solution of nonlinear differential equations with convolution product nonlinearities
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 4
  start-page: 75
  year: 1999
  end-page: 78
  ident: b3
  article-title: Approximate analytical solution of Blasius’ equation
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– reference: M. Dehghan, F. Shakeri, Application of He’s variational iteration method for solving the Cauchy reaction-diffusion problem, J. Comput. Appl. Math. (2007) (in press)
– volume: 29
  start-page: 108
  year: 2006
  end-page: 113
  ident: b13
  article-title: Construction of solitary solution and compacton-like solution by variational iteration method
  publication-title: Chaos Solitons Fractals
– volume: 167
  start-page: 561
  year: 2005
  end-page: 571
  ident: b29
  article-title: An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method
  publication-title: Appl. Math. Comput.
– volume: 54
  start-page: 1071
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b23
  article-title: Variational iteration method for solving integral equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.12.053
– volume: 78
  start-page: 361
  year: 2008
  ident: 10.1016/j.mcm.2007.11.012_b32
  article-title: Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method
  publication-title: Progr. Electromag. Res.
  doi: 10.2528/PIER07090403
– volume: 167
  start-page: 561
  year: 2005
  ident: 10.1016/j.mcm.2007.11.012_b29
  article-title: An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2004.07.020
– ident: 10.1016/j.mcm.2007.11.012_b19
  doi: 10.1016/j.chaos.2007.02.012
– volume: 362
  start-page: 401
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b12
  article-title: Solution of problems in calculus of variations via He’s variational iteration method
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2006.09.101
– volume: 129
  start-page: 339
  year: 2002
  ident: 10.1016/j.mcm.2007.11.012_b38
  article-title: Solving the problem of biological species living together by Adomian decomposition method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(01)00043-1
– volume: 66
  start-page: 2315
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b27
  article-title: Analysis of Adomian decomposition applied to a third-order ordinary differential equation from thin film flow
  publication-title: Nonlinear Analysis: Theory, Methods and Applications
  doi: 10.1016/j.na.2006.03.021
– volume: 36
  start-page: 309
  year: 2008
  ident: 10.1016/j.mcm.2007.11.012_b14
  article-title: Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.06.088
– volume: 207
  start-page: 155
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b18
  article-title: Variational iteration method for solving cubic nonlinear Schrodinger equation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.07.023
– volume: 135
  start-page: 501
  year: 1988
  ident: 10.1016/j.mcm.2007.11.012_b37
  article-title: A review of the decomposition method in applied mathematics, I
  publication-title: Math. Anal. Appl.
  doi: 10.1016/0022-247X(88)90170-9
– volume: 21
  start-page: 24
  issue: 1
  year: 2005
  ident: 10.1016/j.mcm.2007.11.012_b42
  article-title: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.20019
– volume: 7
  start-page: 447
  year: 2006
  ident: 10.1016/j.mcm.2007.11.012_b43
  article-title: Implicit collocation technique for heat equation with non-classic initial condition
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/IJNSNS.2006.7.4.461
– ident: 10.1016/j.mcm.2007.11.012_b16
  doi: 10.1016/j.cam.2007.03.006
– volume: 4
  start-page: 75
  year: 1999
  ident: 10.1016/j.mcm.2007.11.012_b3
  article-title: Approximate analytical solution of Blasius’ equation
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/S1007-5704(99)90063-1
– volume: 51
  start-page: 89
  year: 2008
  ident: 10.1016/j.mcm.2007.11.012_b9
  article-title: Numerical solution of the Klein–Gordon equation via He’s variational iteration method
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-006-9194-x
– volume: 54
  start-page: 903
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b20
  article-title: Variational iteration method for solving multispecies Lotka–Volterra equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.12.058
– volume: 30
  start-page: 1221
  year: 2006
  ident: 10.1016/j.mcm.2007.11.012_b31
  article-title: Homotopy perturbation method for pure nonlinear differential equation
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.08.180
– volume: 207
  start-page: 64
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b7
  article-title: Harmonic wave generation in non linear thermoelasticity by variational iteration method and Adomian’s method
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.07.013
– volume: 54
  start-page: 1139
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b6
  article-title: Direct and inverse one-phase Stefan problem solved by the variational iteration method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.12.061
– volume: 75
  start-page: 551
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b33
  article-title: Inverse problem of diffusion equation by He’s homotopy perturbation method
  publication-title: Phys. Scripta
  doi: 10.1088/0031-8949/75/4/031
– volume: 167
  start-page: 57
  year: 1998
  ident: 10.1016/j.mcm.2007.11.012_b1
  article-title: Approximate solution of nonlinear differential equations with convolution product nonlinearities
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(98)00108-X
– volume: 193
  start-page: 455
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b8
  article-title: The variational iteration method for a reliable treatment of the linear and the nonlinear Goursat problem
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.03.083
– volume: 52
  start-page: 39
  year: 2005
  ident: 10.1016/j.mcm.2007.11.012_b40
  article-title: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.02.002
– start-page: 1
  year: 2006
  ident: 10.1016/j.mcm.2007.11.012_b26
  article-title: The use of Adomian decomposition method for solving problems in calculus of variations
  publication-title: Math. Probl. Eng.
  doi: 10.1155/MPE/2006/65379
– volume: 22
  start-page: 220
  year: 2006
  ident: 10.1016/j.mcm.2007.11.012_b45
  article-title: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.20071
– volume: 71
  start-page: 16
  year: 2006
  ident: 10.1016/j.mcm.2007.11.012_b44
  article-title: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2005.10.001
– volume: 207
  start-page: 35
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b15
  article-title: Application of He’s variational iteration method to nonlinear Jaulent Miodek equations and comparing it with ADM
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.07.029
– volume: 114
  start-page: 115
  year: 2000
  ident: 10.1016/j.mcm.2007.11.012_b2
  article-title: Variational iteration method for autonomous ordinary differential systems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(99)00104-6
– volume: 207
  start-page: 53
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b5
  article-title: An approximation solution of a nonlinear equation with Riemann Liouville’s fractional derivatives by He’s variational iteration method
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.07.011
– volume: 29
  start-page: 108
  year: 2006
  ident: 10.1016/j.mcm.2007.11.012_b13
  article-title: Construction of solitary solution and compacton-like solution by variational iteration method
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.10.100
– volume: 207
  start-page: 46
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b10
  article-title: Shock-peakon and shock-compacton solutions for K(p,q) equation by variational iteration method
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.07.026
– year: 1988
  ident: 10.1016/j.mcm.2007.11.012_b34
– volume: 23
  start-page: 282
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b35
  article-title: Numerical solution of the one-dimensional wave equation with an integral condition
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.20177
– volume: 32
  start-page: 28
  year: 2008
  ident: 10.1016/j.mcm.2007.11.012_b22
  article-title: Numerical methods for nonlinear partial differential equations of fractional order
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2006.10.025
– volume: 174
  start-page: 329
  year: 2006
  ident: 10.1016/j.mcm.2007.11.012_b28
  article-title: Analytical solution of a fractional diffusion equation by Adomian decomposition method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.04.082
– volume: 74
  start-page: 310
  year: 2006
  ident: 10.1016/j.mcm.2007.11.012_b4
  article-title: The use of He’s variational iteration method for solving the Fokker–Planck equation
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/74/3/003
– year: 1994
  ident: 10.1016/j.mcm.2007.11.012_b36
– volume: 188
  start-page: 485
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b25
  article-title: The variational iteration method for solving two forms of Blasius equation on a half-infinite domain
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.10.009
– volume: 41
  start-page: 196
  year: 2005
  ident: 10.1016/j.mcm.2007.11.012_b41
  article-title: Parameter determination in a partial differential equation from the overspecified data
  publication-title: Math. Comput. Modelling
  doi: 10.1016/j.mcm.2004.07.010
– volume: 54
  start-page: 1086
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b24
  article-title: Fourth order integro-differential equations using variational iteration method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.12.055
– volume: 36
  start-page: 791
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b46
  article-title: Time-splitting procedures for the solution of the two-dimensional transport equation
  publication-title: Kybernetes
  doi: 10.1108/03684920710749857
– volume: 20
  start-page: 1141
  year: 2006
  ident: 10.1016/j.mcm.2007.11.012_b30
  article-title: Some asymptotic methods for strongly nonlinear equations
  publication-title: Internat. J. Modern Phys. B
  doi: 10.1142/S0217979206033796
– volume: 29
  start-page: 313
  year: 2006
  ident: 10.1016/j.mcm.2007.11.012_b21
  article-title: Solution of nonlinear coagulation problem with mass loss
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.08.044
– volume: 36
  start-page: 660
  year: 2008
  ident: 10.1016/j.mcm.2007.11.012_b11
  article-title: Application of variational iteration method to the generalized Burgers–Huxley equation
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.06.080
– ident: 10.1016/j.mcm.2007.11.012_b39
– volume: 32
  start-page: 661
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b47
  article-title: The one-dimensional heat equation subject to a boundary integral specification
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.11.010
– volume: 207
  start-page: 92
  year: 2007
  ident: 10.1016/j.mcm.2007.11.012_b17
  article-title: Variational iteration method for solving two-point boundary value problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.07.014
SSID ssj0005908
Score 2.1600375
Snippet In this work, a system of two nonlinear integro-differential equations which arises in biology is considered and the well-known variational iteration method is...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 685
SubjectTerms Adomian decomposition method
Calculus of variations and optimal control
Difference and functional equations, recurrence relations
Exact sciences and technology
Integro-differential equation
Mathematical analysis
Mathematical biology
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Pseudospectral Legendre method
Sciences and techniques of general use
The equilibrium state of two species living together
Variational iteration method
Title Solution of a model describing biological species living together using the variational iteration method
URI https://dx.doi.org/10.1016/j.mcm.2007.11.012
Volume 48
WOSCitedRecordID wos000257950200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-9479
  dateEnd: 20131231
  omitProxy: false
  ssIdentifier: ssj0005908
  issn: 0895-7177
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMIIZ5ieax84ESVVRK7dnysoFAeu-KwSL1FiTNhu-qm1aZb7Z0_zji2k3QRCxy4REmUxFW_L-PxZGY-Ql6jzx2ZT4dBoXUecCbHQV6GmYlbaaFAxYVtkvRFHh8n87n6Ohj88LUw26WsquTqSq3_K9R4DsE2pbP_AHf7UDyB-wg6bhF23P4V8D7QZSsfG6WbUQHGOuQmLGC7LtliSKM9D_VouWiiCpvV96b6d3RZ-xqqLa6kfbTQ9l82D7aq03239qht_upaD2gnFmHHX_r50YRyZpPPuHhsnGb0c8-hjUe_m84-zCZN2sERnBaLnYBE0mZcuSiZr5Rxxqlv0NQ4wOWj7FtfnvRYNg76xlRYMR83LwsrpPSLybfRh7PDc20bCxyapqwuNXunvfa1aa9NRozRZY05E7fIXizHKhmSvcnH6fxTlymkGmHD9uf7j-NNmuC1YX_n3txbZzVCUFq1lJ4Lc_KA3HdrDzqxnHlIBlA9Ind7HSnxqEOyfkxOPZfoqqQZbbCkHZdoxyXquEQtl6jnEm24RHGX9rhEWy5Ry6Un5Nv76cnbWeCkOQLNYrkJyggSAaIs4jwPGVM6Al5yFekMQpBloVUcZZECDjHjMOYqEyIpQwFacF1AxJ6SYbWq4BmhodRFLhkwrnOelEmOE67kusxVyCDjxT4J_T-aate33sinLFOfoHiWIghGT1XiejZFEPbJm_aWtW3actPF3MOUOq_TepMpMuym2w52IG0H8nR6_qcLXpA73evzkgw3F5fwitzW282ivjhwJPwJOo2wNQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+a+model+describing+biological+species+living+together+using+the+variational+iteration+method&rft.jtitle=Mathematical+and+computer+modelling&rft.au=SHAKERI%2C+Fatemeh&rft.au=DEHGHAN%2C+Mehdi&rft.date=2008-09-01&rft.pub=Elsevier+Science&rft.issn=0895-7177&rft.volume=48&rft.issue=5-6&rft.spage=685&rft.epage=699&rft_id=info:doi/10.1016%2Fj.mcm.2007.11.012&rft.externalDBID=n%2Fa&rft.externalDocID=20572436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-7177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-7177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-7177&client=summon