Generalized polynomial Bezoutian with respect to a Jacobson chain basis over an arbitrary field

We introduce a so-called generalized polynomial Bezoutian with respect to a Jacobson chain basis over an arbitrary field. Some characterization of this kind of matrix, such as the Barnett-type factorization and the intertwining relation with generalized hypercompanion matrix, are obtained. The diago...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 432; číslo 12; s. 3351 - 3360
Hlavní autor: Wu, Huazhang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.07.2010
Elsevier
Témata:
ISSN:0024-3795
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce a so-called generalized polynomial Bezoutian with respect to a Jacobson chain basis over an arbitrary field. Some characterization of this kind of matrix, such as the Barnett-type factorization and the intertwining relation with generalized hypercompanion matrix, are obtained. The diagonal reduction formula via the generalized confluent Vandermonde matrix similar to that of classical Bezoutian is presented. The method used is based on polynomial module and operator representation.
ISSN:0024-3795
DOI:10.1016/j.laa.2010.01.032