Generalized polynomial Bezoutian with respect to a Jacobson chain basis over an arbitrary field
We introduce a so-called generalized polynomial Bezoutian with respect to a Jacobson chain basis over an arbitrary field. Some characterization of this kind of matrix, such as the Barnett-type factorization and the intertwining relation with generalized hypercompanion matrix, are obtained. The diago...
Uložené v:
| Vydané v: | Linear algebra and its applications Ročník 432; číslo 12; s. 3351 - 3360 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier Inc
01.07.2010
Elsevier |
| Predmet: | |
| ISSN: | 0024-3795 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We introduce a so-called generalized polynomial Bezoutian with respect to a Jacobson chain basis over an arbitrary field. Some characterization of this kind of matrix, such as the Barnett-type factorization and the intertwining relation with generalized hypercompanion matrix, are obtained. The diagonal reduction formula via the generalized confluent Vandermonde matrix similar to that of classical Bezoutian is presented. The method used is based on polynomial module and operator representation. |
|---|---|
| AbstractList | We introduce a so-called generalized polynomial Bezoutian with respect to a Jacobson chain basis over an arbitrary field. Some characterization of this kind of matrix, such as the Barnett-type factorization and the intertwining relation with generalized hypercompanion matrix, are obtained. The diagonal reduction formula via the generalized confluent Vandermonde matrix similar to that of classical Bezoutian is presented. The method used is based on polynomial module and operator representation. |
| Author | Wu, Huazhang |
| Author_xml | – sequence: 1 givenname: Huazhang surname: Wu fullname: Wu, Huazhang email: wuhz@hfut.edu.cn organization: Department of Mathematics, Hefei University of Technology, Hefei 230009, People’s Republic of China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22763741$$DView record in Pascal Francis |
| BookMark | eNp9kD1LBDEQhlMo-PkD7NJY3jlJ9jYuVip6KoKN1mGSncU51uRIVkV_vZETCwurYeB9hnmfPbEVUyQhjhTMFaj2ZDUfEeca6g5qDkZviV0A3cyM7RY7Yq-UFQA0FvSucEuKlHHkT-rlOo0fMb0wjvKCPtPrxBjlO0_PMlNZU5jklCTKOwzJlxRleEaO0mPhItMbZVnjmD1PGfOHHJjG_kBsDzgWOvyZ--Lp-urx8mZ2_7C8vTy_nwWj7TQjakLfG_ILMN2iMdq32lsdzKn3rW9x8K3qhqYzfQshdIYAFm0_kLWnNBgLZl8cb-6usQQch4wxcHHrzC_1F6e1bY1tVM2pTS7kVEqm4TeiwH3bcytX7blvew6Uq_YqY_8wgSecOMValMd_ybMNSbX6G1N2JTDFQD3nqtP1if-hvwDzeo7b |
| CODEN | LAAPAW |
| CitedBy_id | crossref_primary_10_1016_j_amc_2012_07_028 |
| Cites_doi | 10.1080/03081089008817991 10.1080/03081088108817420 10.1016/0024-3795(89)90367-4 10.1016/0024-3795(95)00585-4 10.1016/0016-0032(76)90076-4 10.1109/TAC.1981.1102570 10.1016/0024-3795(85)90251-4 10.1109/TAC.1976.1101263 10.1016/0024-3795(93)90282-S 10.1016/0024-3795(89)90712-X 10.1080/03081088008817356 10.1016/S0024-3795(01)00282-8 10.1016/0024-3795(87)90075-9 10.1016/0024-3795(89)90684-8 10.1137/0122009 10.1016/0024-3795(78)90060-5 10.1016/0024-3795(89)90552-1 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW |
| DOI | 10.1016/j.laa.2010.01.032 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EndPage | 3360 |
| ExternalDocumentID | 22763741 10_1016_j_laa_2010_01_032 S0024379510000455 |
| GrantInformation_xml | – fundername: NSF of Anhui Province in China grantid: 090416230 – fundername: NNSF of China grantid: 60772133 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXKI AAXUO ABAOU ABDPE ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD ADVLN AEBSH AEKER AENEX AEXQZ AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSW SSZ T5K T9H TN5 TWZ WH7 WUQ XPP YQT ZMT ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AETEA AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c327t-ee4cdd3eb50395432b62b72c38bb6b6afb619f493d60cc93e0056dfe778ef3703 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000277948200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0024-3795 |
| IngestDate | Mon Jul 21 09:16:34 EDT 2025 Tue Nov 18 22:11:22 EST 2025 Sat Nov 29 05:08:54 EST 2025 Tue Dec 03 03:44:25 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Diagonal reduction Barnett-type formula Jacobson chain basis 15A57 Polynomial module Generalized polynomial Bezoutian Bézout idendity Matrix polynomial Factorization Generalized Companion matrix Vandermonde matrix |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c327t-ee4cdd3eb50395432b62b72c38bb6b6afb619f493d60cc93e0056dfe778ef3703 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.laa.2010.01.032 |
| PageCount | 10 |
| ParticipantIDs | pascalfrancis_primary_22763741 crossref_primary_10_1016_j_laa_2010_01_032 crossref_citationtrail_10_1016_j_laa_2010_01_032 elsevier_sciencedirect_doi_10_1016_j_laa_2010_01_032 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-07-01 |
| PublicationDateYYYYMMDD | 2010-07-01 |
| PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Linear algebra and its applications |
| PublicationYear | 2010 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Wimmer (bib21) 1989; 117 Mani, Hartwig (bib18) 1997; 251 Fuhrmann, Datta (bib10) 1989; 120 Fuhrmann (bib9) 1996 Ptak, Wimmer (bib19) 1985; 71 Datta (bib6) 1978; 22 Gover, Barnett (bib11) 1990; 27 Jacobson (bib15) 1953; vol. 1 Hartwig (bib12) 1987; 94 Barnett (bib3) 1972; 22 Barnett, Lancaster (bib4) 1980; 9 Fuhrmann (bib8) 1981; AC-26 Barnett (bib2) 1983 Helmke, Fuhrmann (bib13) 1989; 122–124 Lancaster, Tismenetsky (bib17) 1985 Yang (bib22) 2001; 331 Heinig, Rost (bib14) 1984; vol. 13 Krein, Naimark (bib16) 1936; 10 Sansigre, Alvarez (bib20) 1989; 121 Chen, Yang (bib5) 1993; 186 Fuhrmann (bib7) 1976; 301 Anderson, Jury (bib1) 1976; AC-21 Gover (10.1016/j.laa.2010.01.032_bib11) 1990; 27 Chen (10.1016/j.laa.2010.01.032_bib5) 1993; 186 Yang (10.1016/j.laa.2010.01.032_bib22) 2001; 331 Jacobson (10.1016/j.laa.2010.01.032_bib15) 1953; vol. 1 Ptak (10.1016/j.laa.2010.01.032_bib19) 1985; 71 Fuhrmann (10.1016/j.laa.2010.01.032_bib9) 1996 Lancaster (10.1016/j.laa.2010.01.032_bib17) 1985 Barnett (10.1016/j.laa.2010.01.032_bib2) 1983 Barnett (10.1016/j.laa.2010.01.032_bib3) 1972; 22 Barnett (10.1016/j.laa.2010.01.032_bib4) 1980; 9 Fuhrmann (10.1016/j.laa.2010.01.032_bib8) 1981; AC-26 Helmke (10.1016/j.laa.2010.01.032_bib13) 1989; 122–124 Anderson (10.1016/j.laa.2010.01.032_bib1) 1976; AC-21 Heinig (10.1016/j.laa.2010.01.032_bib14) 1984; vol. 13 Wimmer (10.1016/j.laa.2010.01.032_bib21) 1989; 117 Fuhrmann (10.1016/j.laa.2010.01.032_bib10) 1989; 120 Krein (10.1016/j.laa.2010.01.032_bib16) 1936; 10 Sansigre (10.1016/j.laa.2010.01.032_bib20) 1989; 121 Fuhrmann (10.1016/j.laa.2010.01.032_bib7) 1976; 301 Mani (10.1016/j.laa.2010.01.032_bib18) 1997; 251 Datta (10.1016/j.laa.2010.01.032_bib6) 1978; 22 Hartwig (10.1016/j.laa.2010.01.032_bib12) 1987; 94 |
| References_xml | – volume: 9 start-page: 99 year: 1980 end-page: 110 ident: bib4 article-title: Some properties of the Bezoutian for polynomial matrices publication-title: Linear and Multilinear Algebra – year: 1985 ident: bib17 article-title: The Theory of Matrices – volume: 71 start-page: 267 year: 1985 end-page: 272 ident: bib19 article-title: On the Bezoutian for polynomial matrices publication-title: Linear Algebra Appl. – volume: 121 start-page: 401 year: 1989 end-page: 408 ident: bib20 article-title: On Bezoutian reduction with the Vandermonde matrix publication-title: Linear Algebra Appl. – year: 1983 ident: bib2 article-title: Polynomials and Linear Control System – volume: 94 start-page: 1 year: 1987 end-page: 34 ident: bib12 article-title: Resultants, companion matrices, and Jacobson chains publication-title: Linear Algebra Appl. – volume: 251 start-page: 293 year: 1997 end-page: 320 ident: bib18 article-title: Generalized polynomial bases and the Bezoutian publication-title: Linear Algebra Appl. – volume: 122–124 start-page: 1039 year: 1989 end-page: 1097 ident: bib13 article-title: Bezoutians publication-title: Linear Algebra Appl. – volume: 117 start-page: 105 year: 1989 end-page: 113 ident: bib21 article-title: Generalized Bezoutians and block Hankel matrices publication-title: Linear Algebra Appl. – volume: AC-21 start-page: 551 year: 1976 end-page: 556 ident: bib1 article-title: Generalized Bezout and Sylvester matrices in multivariable control publication-title: IEEE Trans. Automat. Control – volume: 331 start-page: 165 year: 2001 end-page: 179 ident: bib22 article-title: Polynomial Bezoutian matrix with respect to a general basis publication-title: Linear Algebra Appl. – volume: 301 start-page: 521 year: 1976 end-page: 540 ident: bib7 article-title: Algebraic system theory: an analyst’s point of view publication-title: Franklin Inst. – volume: 22 start-page: 89 year: 1978 end-page: 96 ident: bib6 article-title: An elementary proof of the stability criterion of Lienard and Chipart publication-title: Linear Algebra Appl. – volume: 10 start-page: 265 year: 1936 end-page: 308 ident: bib16 article-title: The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations (English trans.) publication-title: Linear and Multilinear Algebra – volume: 22 start-page: 84 year: 1972 end-page: 86 ident: bib3 article-title: A note on the Bezoutian matrix publication-title: SIAM J. Appl. Math. – volume: 120 start-page: 23 year: 1989 end-page: 37 ident: bib10 article-title: On Bezoutian, Vandermonde matrices and the Lienard–Chipart criterion publication-title: Linear Algebra Appl. – volume: vol. 1 year: 1953 ident: bib15 publication-title: Lectures in Abstract Algebra – volume: vol. 13 year: 1984 ident: bib14 article-title: Algebraic Methods for Toeplitz-like Matrices and Operators publication-title: Operator Theory – volume: 27 start-page: 33 year: 1990 end-page: 48 ident: bib11 article-title: A generalized Bezoutian matrix publication-title: Linear and Multilinear Algebra – volume: 186 start-page: 37 year: 1993 end-page: 44 ident: bib5 article-title: Bezoutian representation via Vandermonde matrix publication-title: Linear Algebra Appl. – volume: AC-26 start-page: 284 year: 1981 end-page: 295 ident: bib8 article-title: Duality in polynomial models with some applications to geometric control theory publication-title: IEEE Trans. Automat. Control – year: 1996 ident: bib9 article-title: A Polynomial Approach to Linear Algebra – volume: 27 start-page: 33 year: 1990 ident: 10.1016/j.laa.2010.01.032_bib11 article-title: A generalized Bezoutian matrix publication-title: Linear and Multilinear Algebra doi: 10.1080/03081089008817991 – volume: 10 start-page: 265 year: 1936 ident: 10.1016/j.laa.2010.01.032_bib16 article-title: The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations (English trans.) publication-title: Linear and Multilinear Algebra doi: 10.1080/03081088108817420 – volume: 120 start-page: 23 year: 1989 ident: 10.1016/j.laa.2010.01.032_bib10 article-title: On Bezoutian, Vandermonde matrices and the Lienard–Chipart criterion publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(89)90367-4 – volume: 251 start-page: 293 year: 1997 ident: 10.1016/j.laa.2010.01.032_bib18 article-title: Generalized polynomial bases and the Bezoutian publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(95)00585-4 – volume: vol. 1 year: 1953 ident: 10.1016/j.laa.2010.01.032_bib15 – volume: 301 start-page: 521 year: 1976 ident: 10.1016/j.laa.2010.01.032_bib7 article-title: Algebraic system theory: an analyst’s point of view publication-title: Franklin Inst. doi: 10.1016/0016-0032(76)90076-4 – volume: AC-26 start-page: 284 year: 1981 ident: 10.1016/j.laa.2010.01.032_bib8 article-title: Duality in polynomial models with some applications to geometric control theory publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1981.1102570 – volume: 71 start-page: 267 year: 1985 ident: 10.1016/j.laa.2010.01.032_bib19 article-title: On the Bezoutian for polynomial matrices publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(85)90251-4 – volume: AC-21 start-page: 551 year: 1976 ident: 10.1016/j.laa.2010.01.032_bib1 article-title: Generalized Bezout and Sylvester matrices in multivariable control publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1976.1101263 – year: 1983 ident: 10.1016/j.laa.2010.01.032_bib2 – volume: 186 start-page: 37 year: 1993 ident: 10.1016/j.laa.2010.01.032_bib5 article-title: Bezoutian representation via Vandermonde matrix publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(93)90282-S – volume: 121 start-page: 401 year: 1989 ident: 10.1016/j.laa.2010.01.032_bib20 article-title: On Bezoutian reduction with the Vandermonde matrix publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(89)90712-X – volume: 9 start-page: 99 year: 1980 ident: 10.1016/j.laa.2010.01.032_bib4 article-title: Some properties of the Bezoutian for polynomial matrices publication-title: Linear and Multilinear Algebra doi: 10.1080/03081088008817356 – year: 1996 ident: 10.1016/j.laa.2010.01.032_bib9 – volume: 331 start-page: 165 year: 2001 ident: 10.1016/j.laa.2010.01.032_bib22 article-title: Polynomial Bezoutian matrix with respect to a general basis publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(01)00282-8 – volume: 94 start-page: 1 year: 1987 ident: 10.1016/j.laa.2010.01.032_bib12 article-title: Resultants, companion matrices, and Jacobson chains publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(87)90075-9 – volume: 122–124 start-page: 1039 year: 1989 ident: 10.1016/j.laa.2010.01.032_bib13 article-title: Bezoutians publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(89)90684-8 – volume: vol. 13 year: 1984 ident: 10.1016/j.laa.2010.01.032_bib14 article-title: Algebraic Methods for Toeplitz-like Matrices and Operators – volume: 22 start-page: 84 year: 1972 ident: 10.1016/j.laa.2010.01.032_bib3 article-title: A note on the Bezoutian matrix publication-title: SIAM J. Appl. Math. doi: 10.1137/0122009 – year: 1985 ident: 10.1016/j.laa.2010.01.032_bib17 – volume: 22 start-page: 89 year: 1978 ident: 10.1016/j.laa.2010.01.032_bib6 article-title: An elementary proof of the stability criterion of Lienard and Chipart publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(78)90060-5 – volume: 117 start-page: 105 year: 1989 ident: 10.1016/j.laa.2010.01.032_bib21 article-title: Generalized Bezoutians and block Hankel matrices publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(89)90552-1 |
| SSID | ssj0004702 |
| Score | 1.9142448 |
| Snippet | We introduce a so-called generalized polynomial Bezoutian with respect to a Jacobson chain basis over an arbitrary field. Some characterization of this kind of... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 3351 |
| SubjectTerms | Algebra Barnett-type formula Diagonal reduction Exact sciences and technology Field theory and polynomials Generalized polynomial Bezoutian Jacobson chain basis Linear and multilinear algebra, matrix theory Mathematics Polynomial module Sciences and techniques of general use |
| Title | Generalized polynomial Bezoutian with respect to a Jacobson chain basis over an arbitrary field |
| URI | https://dx.doi.org/10.1016/j.laa.2010.01.032 |
| Volume | 432 |
| WOSCitedRecordID | wos000277948200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0024-3795 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 20180131 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004702 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQywGEEE-1PCofOBGlytre2D4uqFAqseLQFSsukZ3Y0lar7GofqPTXM37EmxZR4MAlSiInUTyfxzP2zDcIvSmtNoQYlluripyxWuVCKgsj3nJKho2SovHFJvh4LKZT-SXmnqx9OQHetuLyUi7_q6jhHgjbpc7-g7jTS-EGnIPQ4Qhih-NfCT4SSc-uwJRcLuY_XN4xyOGduVps_XD2S6_gZbscS2d6quwM1KKrI-7SgGdtBjObYymBP8-guVrpmc_Nz3y0W9-aBUfW8QC5UiHgdKd9iP6meILNZPTtdDT-mH2d9Bca3B457y80dBkwfW1KGCioUCSz06Zst1y5TSHSQTlSGrllTbwMlQR-UeJhPeHieK5UjL0bHBfxtdcIs29MZCm8kBDQmtzRGewTPpSgr_dHn06mZ7uEWV5EGvnwA912tw_8u_HZ3xksD5ZqDcPIhvonPaPk_BF6GL0JPAooeIzumPYJuv85UfGun6Kqhwe8wwNOeMAODzjiAW8WWOEOD9jjAXs8YIcHDM0THrDHwzM0-XBy_v40j1U18poSvsmNYXXTUKOHBZVDEJcuieakpkLrUpfKavCpLZO0KYu6ltQ4ttjGGs6FsRQmiOdor1205gBhsF2plUJIK2pmRCnBmadMNqIw5UCV9hAVXddVdaScd5VP5lUXW3hRQW9XrrerYlBBbx-it-mRZeBbua0x6-RRRYMxGIIVQOm2x46uyS59qMPNiz81eInu7UbIK7S3WW3Na3S3_r6ZrVdHEW0_ARxklU4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+polynomial+Bezoutian+with+respect+to+a+Jacobson+chain+basis+over+an+arbitrary+field&rft.jtitle=Linear+algebra+and+its+applications&rft.au=HUAZHANG+WU&rft.date=2010-07-01&rft.pub=Elsevier&rft.issn=0024-3795&rft.volume=432&rft.issue=12&rft.spage=3351&rft.epage=3360&rft_id=info:doi/10.1016%2Fj.laa.2010.01.032&rft.externalDBID=n%2Fa&rft.externalDocID=22763741 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon |