A generalization of surfaces family with common spatial geodesic

We analyzed the problem of constructing a surfaces family from a given spatial geodesic curve as in the work of Wang et al. [G.-J. Wang, K. Tang, C.-L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comp. Aided Des. 36 (5) (2004) 447–459], who derived the sufficie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 201; číslo 1; s. 781 - 789
Hlavní autoři: Kasap, Emin, Akyildiz, F. Talay, Orbay, Keziban
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 15.07.2008
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We analyzed the problem of constructing a surfaces family from a given spatial geodesic curve as in the work of Wang et al. [G.-J. Wang, K. Tang, C.-L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comp. Aided Des. 36 (5) (2004) 447–459], who derived the sufficient condition on the marching-scale functions for which the curve C is an isogeodesic curve on a given surface. They assumed that these functions have a factor decomposition. In this work, we generalized their assumption to more general marching-scale functions and derived the sufficient conditions on them for which the curve C is an isogeodesic curve on a given surface. Finally using generalized marching-scale functions, we demonstrated some surfaces about subject.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2008.01.016