Linear objective function optimization with fuzzy relation equation constraints regarding max–av composition

In this paper, an optimization model with a linear objective function subject to a system of the fuzzy relation equations with max–av composition is presented. The solution set of such a fuzzy relation equations is a non-convex set. In this paper, firstly we discuss the feasible solution set with tw...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 173; číslo 2; s. 872 - 886
Hlavní autoři: Khorram, E., Ghodousian, A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 15.02.2006
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, an optimization model with a linear objective function subject to a system of the fuzzy relation equations with max–av composition is presented. The solution set of such a fuzzy relation equations is a non-convex set. In this paper, firstly we discuss the feasible solution set with two schemes and, secondly, study relationship between maximum and minimum points, and also, the feasible points as well. Furthermore, an algorithm and few concrete examples are presented in order to optimize linear objective function.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2005.04.021