Linear objective function optimization with fuzzy relation equation constraints regarding max–av composition
In this paper, an optimization model with a linear objective function subject to a system of the fuzzy relation equations with max–av composition is presented. The solution set of such a fuzzy relation equations is a non-convex set. In this paper, firstly we discuss the feasible solution set with tw...
Uložené v:
| Vydané v: | Applied mathematics and computation Ročník 173; číslo 2; s. 872 - 886 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
Elsevier Inc
15.02.2006
Elsevier |
| Predmet: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, an optimization model with a linear objective function subject to a system of the fuzzy relation equations with max–av composition is presented. The solution set of such a fuzzy relation equations is a non-convex set. In this paper, firstly we discuss the feasible solution set with two schemes and, secondly, study relationship between maximum and minimum points, and also, the feasible points as well. Furthermore, an algorithm and few concrete examples are presented in order to optimize linear objective function. |
|---|---|
| AbstractList | In this paper, an optimization model with a linear objective function subject to a system of the fuzzy relation equations with max–av composition is presented. The solution set of such a fuzzy relation equations is a non-convex set. In this paper, firstly we discuss the feasible solution set with two schemes and, secondly, study relationship between maximum and minimum points, and also, the feasible points as well. Furthermore, an algorithm and few concrete examples are presented in order to optimize linear objective function. |
| Author | Khorram, E. Ghodousian, A. |
| Author_xml | – sequence: 1 givenname: E. surname: Khorram fullname: Khorram, E. – sequence: 2 givenname: A. surname: Ghodousian fullname: Ghodousian, A. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17570064$$DView record in Pascal Francis |
| BookMark | eNp9kL1OwzAUhS0EEm3hAdiyMCbcGzsxERNC_EmVWGC2XMcurhqn2GmhnXgH3pAnwW0QA0MnX99zviudMySHrnWakDOEDAHLi1kmG5XlAEUGLIMcD8gALzlNi5JVh2QAUJUpBaDHZBjCDAB4iWxA3Ng6LX3STmZadXalE7N0cWhd0i4629iN3H3ebfcapc1mnXg973f6bdkPqnWh89K6LkR1Kn1t3TRp5Mf355dcRblZtMFurSfkyMh50Ke_74i83N0-3zyk46f7x5vrcapozru0NqrAitYl8opSiUrXtYHcTLjBClgxkQVOcmBc5hSNAcWRM41VzsuaSSjoiJz3dxcyKDk3Xjplg1h420i_FsgLDlCy6OO9T_k2BK-NULbbhdrmmQsEsa1XzESsV2zrFcBErDeS-I_8O76HueoZHaOvrPYiKKtdTGd9bF_Urd1D_wAKd5ie |
| CODEN | AMHCBQ |
| CitedBy_id | crossref_primary_10_1016_j_amc_2006_07_167 crossref_primary_10_1016_j_fss_2007_07_017 crossref_primary_10_1016_j_mcm_2008_10_018 crossref_primary_10_1016_j_ins_2011_03_004 crossref_primary_10_1109_TFUZZ_2009_2031561 crossref_primary_10_1109_TFUZZ_2016_2593496 crossref_primary_10_1016_j_cie_2018_03_038 crossref_primary_10_1109_TFUZZ_2017_2771406 crossref_primary_10_1007_s10700_011_9099_0 crossref_primary_10_1016_j_amc_2007_07_061 crossref_primary_10_1016_j_amc_2010_04_051 crossref_primary_10_1080_10170669_2010_514124 crossref_primary_10_1016_j_amc_2005_11_069 crossref_primary_10_3233_IFS_151624 crossref_primary_10_1016_j_asoc_2009_12_014 crossref_primary_10_1016_j_ins_2007_02_037 crossref_primary_10_26599_FIE_2024_9270047 crossref_primary_10_1016_j_amc_2007_02_001 crossref_primary_10_1016_j_ins_2016_04_041 crossref_primary_10_1080_16168658_2022_2161442 crossref_primary_10_1016_j_fss_2007_05_013 crossref_primary_10_1007_s10700_008_9029_y crossref_primary_10_1007_s10700_009_9054_5 crossref_primary_10_1007_s10700_009_9059_0 crossref_primary_10_1016_j_asoc_2018_04_029 crossref_primary_10_1016_j_ins_2015_07_058 crossref_primary_10_3233_IFS_141361 crossref_primary_10_1016_j_cie_2007_11_011 crossref_primary_10_1007_s11424_009_9146_x crossref_primary_10_1016_j_mcm_2010_07_018 crossref_primary_10_1016_j_amc_2005_12_027 crossref_primary_10_1016_j_amc_2005_12_006 crossref_primary_10_1142_S0217595908001717 crossref_primary_10_1016_j_ins_2012_08_018 crossref_primary_10_1007_s10700_011_9115_4 |
| Cites_doi | 10.1016/S0019-9958(76)90446-0 10.1016/0165-0114(84)90026-5 10.1109/TSMC.1986.4308946 10.1016/S0165-0114(97)00184-X 10.1016/0165-0114(82)90043-4 10.1016/0165-0114(93)90292-P 10.1016/S0165-0114(98)00471-0 10.1016/0165-0114(88)90008-5 10.1016/0165-0114(81)90059-2 |
| ContentType | Journal Article |
| Copyright | 2005 Elsevier Inc. 2006 INIST-CNRS |
| Copyright_xml | – notice: 2005 Elsevier Inc. – notice: 2006 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.amc.2005.04.021 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1873-5649 |
| EndPage | 886 |
| ExternalDocumentID | 17570064 10_1016_j_amc_2005_04_021 S0096300305003991 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c327t-dfc5193d617933a1ceddf02fb7f19045ba51b2047a231ff0c7174e19276d4a053 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000236068400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 |
| IngestDate | Mon Jul 21 09:16:36 EDT 2025 Tue Nov 18 22:29:45 EST 2025 Sat Nov 29 02:46:09 EST 2025 Fri Feb 23 02:29:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Fuzzy relation equations Linear objective function optimization Fuzzy system Numerical analysis Convex set Linear function Applied mathematics Optimization method Fuzzy relation Objective function Mathematical programming Equation system |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c327t-dfc5193d617933a1ceddf02fb7f19045ba51b2047a231ff0c7174e19276d4a053 |
| PageCount | 15 |
| ParticipantIDs | pascalfrancis_primary_17570064 crossref_citationtrail_10_1016_j_amc_2005_04_021 crossref_primary_10_1016_j_amc_2005_04_021 elsevier_sciencedirect_doi_10_1016_j_amc_2005_04_021 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-02-15 |
| PublicationDateYYYYMMDD | 2006-02-15 |
| PublicationDate_xml | – month: 02 year: 2006 text: 2006-02-15 day: 15 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2006 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Czogala, Drewniak, Pedrycz (bib3) 1982; 7 Higashi, Klir (bib8) 1984; 13 Winston (bib14) 1995 Guo, Wang, Di Nola, Sessa (bib7) 1988; 26 H.-F. Wang, An algorithm for solving iterated composite relation equations, in: Proc. NAFIPS, 1988, pp. 242–249. Lu, Fang (bib10) 2001; 119 Di Nola (bib4) 1985; 107 Fang, Li (bib6) 1999; 103 Wang, Sessa, Di Nola, Pedrycz (bib13) 1984; 18 G. Li, S.-C. Fang, Resolution of finite fuzzy resolution equations, Report No. 322, North Carolina State University, Raleigh, NC, May 1996. Adlassnig (bib2) 1986; 16 Fang, Puthenpura (bib5) 1993 Prevot (bib11) 1985; 5 Adamopoulos, Pappis (bib1) 1993; 60 Sanchez (bib15) 1976; 30 Zimmerman (bib16) 1991 10.1016/j.amc.2005.04.021_bib9 Di Nola (10.1016/j.amc.2005.04.021_bib4) 1985; 107 Fang (10.1016/j.amc.2005.04.021_bib5) 1993 Fang (10.1016/j.amc.2005.04.021_bib6) 1999; 103 Prevot (10.1016/j.amc.2005.04.021_bib11) 1985; 5 Zimmerman (10.1016/j.amc.2005.04.021_bib16) 1991 Czogala (10.1016/j.amc.2005.04.021_bib3) 1982; 7 Guo (10.1016/j.amc.2005.04.021_bib7) 1988; 26 Adamopoulos (10.1016/j.amc.2005.04.021_bib1) 1993; 60 Wang (10.1016/j.amc.2005.04.021_bib13) 1984; 18 Lu (10.1016/j.amc.2005.04.021_bib10) 2001; 119 10.1016/j.amc.2005.04.021_bib12 Winston (10.1016/j.amc.2005.04.021_bib14) 1995 Higashi (10.1016/j.amc.2005.04.021_bib8) 1984; 13 Sanchez (10.1016/j.amc.2005.04.021_bib15) 1976; 30 Adlassnig (10.1016/j.amc.2005.04.021_bib2) 1986; 16 |
| References_xml | – volume: 18 start-page: 67 year: 1984 end-page: 74 ident: bib13 article-title: How many lower solutions does a fuzzy relation equation have? publication-title: Bull. Pour. Sous, Ens. Flous. Appl. (BUSEFAL) – volume: 103 start-page: 107 year: 1999 end-page: 113 ident: bib6 article-title: Solving fuzzy relations with a linear objective function publication-title: Fuzzy Set. Syst. – volume: 107 start-page: 148 year: 1985 end-page: 155 ident: bib4 article-title: Relational equations in totally ordered lattices and their complete resolution publication-title: J. Math. Appl. – volume: 16 start-page: 260 year: 1986 end-page: 265 ident: bib2 article-title: Fuzzy set theory in medical diagnosis publication-title: IEEE Trans. Systems Man Cybernet. – volume: 5 start-page: 319 year: 1985 end-page: 322 ident: bib11 article-title: Algorithm for the solution of fuzzy relations publication-title: Fuzzy Set. Syst. – year: 1991 ident: bib16 article-title: Fuzzy Set Theory and its Application – volume: 60 start-page: 83 year: 1993 end-page: 88 ident: bib1 article-title: Some results on the resolution of fuzzy relation equations publication-title: Fuzzy Set. Syst. – reference: G. Li, S.-C. Fang, Resolution of finite fuzzy resolution equations, Report No. 322, North Carolina State University, Raleigh, NC, May 1996. – volume: 30 start-page: 38 year: 1976 end-page: 48 ident: bib15 article-title: Resolution of composite fuzzy relation equations publication-title: Inform. Control – volume: 7 start-page: 89 year: 1982 end-page: 101 ident: bib3 article-title: Fuzzy relation equations on a finite set publication-title: Fuzzy Set. Syst. – volume: 119 start-page: 1 year: 2001 end-page: 20 ident: bib10 article-title: Solving nonlinear optimization problems with fuzzy Relation equation constraints publication-title: Fuzzy Set. Syst. – reference: H.-F. Wang, An algorithm for solving iterated composite relation equations, in: Proc. NAFIPS, 1988, pp. 242–249. – year: 1993 ident: bib5 article-title: Linear Optimization and Extensions: Theory and Algorithm – year: 1995 ident: bib14 article-title: Introduction to Mathematical Programming: Application and Algorithms – volume: 26 start-page: 93 year: 1988 end-page: 104 ident: bib7 article-title: Further contributions to the study of finite fuzzy relation equations publication-title: Fuzzy Set. Syst. – volume: 13 start-page: 65 year: 1984 end-page: 82 ident: bib8 article-title: Resolution of finite fuzzy relation equations publication-title: Fuzzy Set. Syst. – volume: 30 start-page: 38 year: 1976 ident: 10.1016/j.amc.2005.04.021_bib15 article-title: Resolution of composite fuzzy relation equations publication-title: Inform. Control doi: 10.1016/S0019-9958(76)90446-0 – year: 1995 ident: 10.1016/j.amc.2005.04.021_bib14 – volume: 18 start-page: 67 year: 1984 ident: 10.1016/j.amc.2005.04.021_bib13 article-title: How many lower solutions does a fuzzy relation equation have? publication-title: Bull. Pour. Sous, Ens. Flous. Appl. (BUSEFAL) – volume: 13 start-page: 65 year: 1984 ident: 10.1016/j.amc.2005.04.021_bib8 article-title: Resolution of finite fuzzy relation equations publication-title: Fuzzy Set. Syst. doi: 10.1016/0165-0114(84)90026-5 – volume: 16 start-page: 260 year: 1986 ident: 10.1016/j.amc.2005.04.021_bib2 article-title: Fuzzy set theory in medical diagnosis publication-title: IEEE Trans. Systems Man Cybernet. doi: 10.1109/TSMC.1986.4308946 – volume: 103 start-page: 107 year: 1999 ident: 10.1016/j.amc.2005.04.021_bib6 article-title: Solving fuzzy relations with a linear objective function publication-title: Fuzzy Set. Syst. doi: 10.1016/S0165-0114(97)00184-X – year: 1993 ident: 10.1016/j.amc.2005.04.021_bib5 – volume: 7 start-page: 89 year: 1982 ident: 10.1016/j.amc.2005.04.021_bib3 article-title: Fuzzy relation equations on a finite set publication-title: Fuzzy Set. Syst. doi: 10.1016/0165-0114(82)90043-4 – ident: 10.1016/j.amc.2005.04.021_bib12 – volume: 107 start-page: 148 year: 1985 ident: 10.1016/j.amc.2005.04.021_bib4 article-title: Relational equations in totally ordered lattices and their complete resolution publication-title: J. Math. Appl. – ident: 10.1016/j.amc.2005.04.021_bib9 – volume: 60 start-page: 83 year: 1993 ident: 10.1016/j.amc.2005.04.021_bib1 article-title: Some results on the resolution of fuzzy relation equations publication-title: Fuzzy Set. Syst. doi: 10.1016/0165-0114(93)90292-P – volume: 119 start-page: 1 year: 2001 ident: 10.1016/j.amc.2005.04.021_bib10 article-title: Solving nonlinear optimization problems with fuzzy Relation equation constraints publication-title: Fuzzy Set. Syst. doi: 10.1016/S0165-0114(98)00471-0 – year: 1991 ident: 10.1016/j.amc.2005.04.021_bib16 – volume: 26 start-page: 93 year: 1988 ident: 10.1016/j.amc.2005.04.021_bib7 article-title: Further contributions to the study of finite fuzzy relation equations publication-title: Fuzzy Set. Syst. doi: 10.1016/0165-0114(88)90008-5 – volume: 5 start-page: 319 year: 1985 ident: 10.1016/j.amc.2005.04.021_bib11 article-title: Algorithm for the solution of fuzzy relations publication-title: Fuzzy Set. Syst. doi: 10.1016/0165-0114(81)90059-2 |
| SSID | ssj0007614 |
| Score | 2.0047908 |
| Snippet | In this paper, an optimization model with a linear objective function subject to a system of the fuzzy relation equations with max–av composition is presented.... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 872 |
| SubjectTerms | Calculus of variations and optimal control Exact sciences and technology Fuzzy relation equations Linear objective function optimization Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical methods in mathematical programming, optimization and calculus of variations Numerical methods in optimization and calculus of variations Sciences and techniques of general use |
| Title | Linear objective function optimization with fuzzy relation equation constraints regarding max–av composition |
| URI | https://dx.doi.org/10.1016/j.amc.2005.04.021 |
| Volume | 173 |
| WOSCitedRecordID | wos000236068400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQcQQjzV8qh84ESVldex4-RYoUWARIVEkfYWOY7TUnWzy7609MSdI_-QX8I4Y2fTRVSAxCVaWZuX58vnmfE8CHluUh5LpnlkRSoiMShZpBOpo0xYXipWZrw0TbMJdXycjkbZ-17vW8iFWV2ouk7X62z6X0UNYyBslzr7F-JuLwoD8BuEDkcQOxz_SPBgXbriPJPiHLns0C1dqBcCPYx93iU6YKvl5eUXn88CY_YzFv52sejzpnlEs6tw6lBUnx6O9TrERsR61USj-5Cvroob9NpxWxB2HpLnpsutjf-zyWyGiBz220igM7CUly63s-Gt_rZfgkeYmYnOspAwcyWe01lMUcwYcppFzk1VHMkEK5e2pIwNTjz6eIdiU2z1E1ZrLKT9y0KAPonzvh4b7zgTfYa52Fv1tT-4Z4obW8olKrtKCLtcyQxYfvfozXD0tl3YVYKl4sM7hE3yJlxw60a_U3NuT_UcPr4Ku6Z0VJmTu-SOt0HoEWLnHunZ-j659W4jrwekRhTRFkU0oIh2UUQdimiDIhpQRAOKaAdFtEURBRT9-Ppdr2gHPw_Jx1fDk5evI9-aIzIxV4uorIxT_cvE8XusB8aWZcV4VagKNEwhCy0HBWdCabAfqooZBZavBWtCJaXQQPyPyE49qe0eoZktCqWKQnKdCZ3JYpBWwlS2TBJluUz3CQszmRtft949-0UeAhTPc5h8109V5kzkMPn75EV7yhSLtlz3ZxHEk3utE7XJHLB03WkHV0S5uZFyLSMS8fjfrvuE3Nx8TU_JzmK2tM_IDbNafJrPDjwkfwJhFLbK |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+objective+function+optimization+with+fuzzy+relation+equation+constraints+regarding+max%E2%80%93av+composition&rft.jtitle=Applied+mathematics+and+computation&rft.au=Khorram%2C+E.&rft.au=Ghodousian%2C+A.&rft.date=2006-02-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=173&rft.issue=2&rft.spage=872&rft.epage=886&rft_id=info:doi/10.1016%2Fj.amc.2005.04.021&rft.externalDocID=S0096300305003991 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |