Linear objective function optimization with fuzzy relation equation constraints regarding max–av composition

In this paper, an optimization model with a linear objective function subject to a system of the fuzzy relation equations with max–av composition is presented. The solution set of such a fuzzy relation equations is a non-convex set. In this paper, firstly we discuss the feasible solution set with tw...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics and computation Ročník 173; číslo 2; s. 872 - 886
Hlavní autori: Khorram, E., Ghodousian, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Elsevier Inc 15.02.2006
Elsevier
Predmet:
ISSN:0096-3003, 1873-5649
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, an optimization model with a linear objective function subject to a system of the fuzzy relation equations with max–av composition is presented. The solution set of such a fuzzy relation equations is a non-convex set. In this paper, firstly we discuss the feasible solution set with two schemes and, secondly, study relationship between maximum and minimum points, and also, the feasible points as well. Furthermore, an algorithm and few concrete examples are presented in order to optimize linear objective function.
AbstractList In this paper, an optimization model with a linear objective function subject to a system of the fuzzy relation equations with max–av composition is presented. The solution set of such a fuzzy relation equations is a non-convex set. In this paper, firstly we discuss the feasible solution set with two schemes and, secondly, study relationship between maximum and minimum points, and also, the feasible points as well. Furthermore, an algorithm and few concrete examples are presented in order to optimize linear objective function.
Author Khorram, E.
Ghodousian, A.
Author_xml – sequence: 1
  givenname: E.
  surname: Khorram
  fullname: Khorram, E.
– sequence: 2
  givenname: A.
  surname: Ghodousian
  fullname: Ghodousian, A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17570064$$DView record in Pascal Francis
BookMark eNp9kL1OwzAUhS0EEm3hAdiyMCbcGzsxERNC_EmVWGC2XMcurhqn2GmhnXgH3pAnwW0QA0MnX99zviudMySHrnWakDOEDAHLi1kmG5XlAEUGLIMcD8gALzlNi5JVh2QAUJUpBaDHZBjCDAB4iWxA3Ng6LX3STmZadXalE7N0cWhd0i4629iN3H3ebfcapc1mnXg973f6bdkPqnWh89K6LkR1Kn1t3TRp5Mf355dcRblZtMFurSfkyMh50Ke_74i83N0-3zyk46f7x5vrcapozru0NqrAitYl8opSiUrXtYHcTLjBClgxkQVOcmBc5hSNAcWRM41VzsuaSSjoiJz3dxcyKDk3Xjplg1h420i_FsgLDlCy6OO9T_k2BK-NULbbhdrmmQsEsa1XzESsV2zrFcBErDeS-I_8O76HueoZHaOvrPYiKKtdTGd9bF_Urd1D_wAKd5ie
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1016_j_amc_2006_07_167
crossref_primary_10_1016_j_fss_2007_07_017
crossref_primary_10_1016_j_mcm_2008_10_018
crossref_primary_10_1016_j_ins_2011_03_004
crossref_primary_10_1109_TFUZZ_2009_2031561
crossref_primary_10_1109_TFUZZ_2016_2593496
crossref_primary_10_1016_j_cie_2018_03_038
crossref_primary_10_1109_TFUZZ_2017_2771406
crossref_primary_10_1007_s10700_011_9099_0
crossref_primary_10_1016_j_amc_2007_07_061
crossref_primary_10_1016_j_amc_2010_04_051
crossref_primary_10_1080_10170669_2010_514124
crossref_primary_10_1016_j_amc_2005_11_069
crossref_primary_10_3233_IFS_151624
crossref_primary_10_1016_j_asoc_2009_12_014
crossref_primary_10_1016_j_ins_2007_02_037
crossref_primary_10_26599_FIE_2024_9270047
crossref_primary_10_1016_j_amc_2007_02_001
crossref_primary_10_1016_j_ins_2016_04_041
crossref_primary_10_1080_16168658_2022_2161442
crossref_primary_10_1016_j_fss_2007_05_013
crossref_primary_10_1007_s10700_008_9029_y
crossref_primary_10_1007_s10700_009_9054_5
crossref_primary_10_1007_s10700_009_9059_0
crossref_primary_10_1016_j_asoc_2018_04_029
crossref_primary_10_1016_j_ins_2015_07_058
crossref_primary_10_3233_IFS_141361
crossref_primary_10_1016_j_cie_2007_11_011
crossref_primary_10_1007_s11424_009_9146_x
crossref_primary_10_1016_j_mcm_2010_07_018
crossref_primary_10_1016_j_amc_2005_12_027
crossref_primary_10_1016_j_amc_2005_12_006
crossref_primary_10_1142_S0217595908001717
crossref_primary_10_1016_j_ins_2012_08_018
crossref_primary_10_1007_s10700_011_9115_4
Cites_doi 10.1016/S0019-9958(76)90446-0
10.1016/0165-0114(84)90026-5
10.1109/TSMC.1986.4308946
10.1016/S0165-0114(97)00184-X
10.1016/0165-0114(82)90043-4
10.1016/0165-0114(93)90292-P
10.1016/S0165-0114(98)00471-0
10.1016/0165-0114(88)90008-5
10.1016/0165-0114(81)90059-2
ContentType Journal Article
Copyright 2005 Elsevier Inc.
2006 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier Inc.
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2005.04.021
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 886
ExternalDocumentID 17570064
10_1016_j_amc_2005_04_021
S0096300305003991
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-dfc5193d617933a1ceddf02fb7f19045ba51b2047a231ff0c7174e19276d4a053
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000236068400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Mon Jul 21 09:16:36 EDT 2025
Tue Nov 18 22:29:45 EST 2025
Sat Nov 29 02:46:09 EST 2025
Fri Feb 23 02:29:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fuzzy relation equations
Linear objective function optimization
Fuzzy system
Numerical analysis
Convex set
Linear function
Applied mathematics
Optimization method
Fuzzy relation
Objective function
Mathematical programming
Equation system
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-dfc5193d617933a1ceddf02fb7f19045ba51b2047a231ff0c7174e19276d4a053
PageCount 15
ParticipantIDs pascalfrancis_primary_17570064
crossref_citationtrail_10_1016_j_amc_2005_04_021
crossref_primary_10_1016_j_amc_2005_04_021
elsevier_sciencedirect_doi_10_1016_j_amc_2005_04_021
PublicationCentury 2000
PublicationDate 2006-02-15
PublicationDateYYYYMMDD 2006-02-15
PublicationDate_xml – month: 02
  year: 2006
  text: 2006-02-15
  day: 15
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2006
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Czogala, Drewniak, Pedrycz (bib3) 1982; 7
Higashi, Klir (bib8) 1984; 13
Winston (bib14) 1995
Guo, Wang, Di Nola, Sessa (bib7) 1988; 26
H.-F. Wang, An algorithm for solving iterated composite relation equations, in: Proc. NAFIPS, 1988, pp. 242–249.
Lu, Fang (bib10) 2001; 119
Di Nola (bib4) 1985; 107
Fang, Li (bib6) 1999; 103
Wang, Sessa, Di Nola, Pedrycz (bib13) 1984; 18
G. Li, S.-C. Fang, Resolution of finite fuzzy resolution equations, Report No. 322, North Carolina State University, Raleigh, NC, May 1996.
Adlassnig (bib2) 1986; 16
Fang, Puthenpura (bib5) 1993
Prevot (bib11) 1985; 5
Adamopoulos, Pappis (bib1) 1993; 60
Sanchez (bib15) 1976; 30
Zimmerman (bib16) 1991
10.1016/j.amc.2005.04.021_bib9
Di Nola (10.1016/j.amc.2005.04.021_bib4) 1985; 107
Fang (10.1016/j.amc.2005.04.021_bib5) 1993
Fang (10.1016/j.amc.2005.04.021_bib6) 1999; 103
Prevot (10.1016/j.amc.2005.04.021_bib11) 1985; 5
Zimmerman (10.1016/j.amc.2005.04.021_bib16) 1991
Czogala (10.1016/j.amc.2005.04.021_bib3) 1982; 7
Guo (10.1016/j.amc.2005.04.021_bib7) 1988; 26
Adamopoulos (10.1016/j.amc.2005.04.021_bib1) 1993; 60
Wang (10.1016/j.amc.2005.04.021_bib13) 1984; 18
Lu (10.1016/j.amc.2005.04.021_bib10) 2001; 119
10.1016/j.amc.2005.04.021_bib12
Winston (10.1016/j.amc.2005.04.021_bib14) 1995
Higashi (10.1016/j.amc.2005.04.021_bib8) 1984; 13
Sanchez (10.1016/j.amc.2005.04.021_bib15) 1976; 30
Adlassnig (10.1016/j.amc.2005.04.021_bib2) 1986; 16
References_xml – volume: 18
  start-page: 67
  year: 1984
  end-page: 74
  ident: bib13
  article-title: How many lower solutions does a fuzzy relation equation have?
  publication-title: Bull. Pour. Sous, Ens. Flous. Appl. (BUSEFAL)
– volume: 103
  start-page: 107
  year: 1999
  end-page: 113
  ident: bib6
  article-title: Solving fuzzy relations with a linear objective function
  publication-title: Fuzzy Set. Syst.
– volume: 107
  start-page: 148
  year: 1985
  end-page: 155
  ident: bib4
  article-title: Relational equations in totally ordered lattices and their complete resolution
  publication-title: J. Math. Appl.
– volume: 16
  start-page: 260
  year: 1986
  end-page: 265
  ident: bib2
  article-title: Fuzzy set theory in medical diagnosis
  publication-title: IEEE Trans. Systems Man Cybernet.
– volume: 5
  start-page: 319
  year: 1985
  end-page: 322
  ident: bib11
  article-title: Algorithm for the solution of fuzzy relations
  publication-title: Fuzzy Set. Syst.
– year: 1991
  ident: bib16
  article-title: Fuzzy Set Theory and its Application
– volume: 60
  start-page: 83
  year: 1993
  end-page: 88
  ident: bib1
  article-title: Some results on the resolution of fuzzy relation equations
  publication-title: Fuzzy Set. Syst.
– reference: G. Li, S.-C. Fang, Resolution of finite fuzzy resolution equations, Report No. 322, North Carolina State University, Raleigh, NC, May 1996.
– volume: 30
  start-page: 38
  year: 1976
  end-page: 48
  ident: bib15
  article-title: Resolution of composite fuzzy relation equations
  publication-title: Inform. Control
– volume: 7
  start-page: 89
  year: 1982
  end-page: 101
  ident: bib3
  article-title: Fuzzy relation equations on a finite set
  publication-title: Fuzzy Set. Syst.
– volume: 119
  start-page: 1
  year: 2001
  end-page: 20
  ident: bib10
  article-title: Solving nonlinear optimization problems with fuzzy Relation equation constraints
  publication-title: Fuzzy Set. Syst.
– reference: H.-F. Wang, An algorithm for solving iterated composite relation equations, in: Proc. NAFIPS, 1988, pp. 242–249.
– year: 1993
  ident: bib5
  article-title: Linear Optimization and Extensions: Theory and Algorithm
– year: 1995
  ident: bib14
  article-title: Introduction to Mathematical Programming: Application and Algorithms
– volume: 26
  start-page: 93
  year: 1988
  end-page: 104
  ident: bib7
  article-title: Further contributions to the study of finite fuzzy relation equations
  publication-title: Fuzzy Set. Syst.
– volume: 13
  start-page: 65
  year: 1984
  end-page: 82
  ident: bib8
  article-title: Resolution of finite fuzzy relation equations
  publication-title: Fuzzy Set. Syst.
– volume: 30
  start-page: 38
  year: 1976
  ident: 10.1016/j.amc.2005.04.021_bib15
  article-title: Resolution of composite fuzzy relation equations
  publication-title: Inform. Control
  doi: 10.1016/S0019-9958(76)90446-0
– year: 1995
  ident: 10.1016/j.amc.2005.04.021_bib14
– volume: 18
  start-page: 67
  year: 1984
  ident: 10.1016/j.amc.2005.04.021_bib13
  article-title: How many lower solutions does a fuzzy relation equation have?
  publication-title: Bull. Pour. Sous, Ens. Flous. Appl. (BUSEFAL)
– volume: 13
  start-page: 65
  year: 1984
  ident: 10.1016/j.amc.2005.04.021_bib8
  article-title: Resolution of finite fuzzy relation equations
  publication-title: Fuzzy Set. Syst.
  doi: 10.1016/0165-0114(84)90026-5
– volume: 16
  start-page: 260
  year: 1986
  ident: 10.1016/j.amc.2005.04.021_bib2
  article-title: Fuzzy set theory in medical diagnosis
  publication-title: IEEE Trans. Systems Man Cybernet.
  doi: 10.1109/TSMC.1986.4308946
– volume: 103
  start-page: 107
  year: 1999
  ident: 10.1016/j.amc.2005.04.021_bib6
  article-title: Solving fuzzy relations with a linear objective function
  publication-title: Fuzzy Set. Syst.
  doi: 10.1016/S0165-0114(97)00184-X
– year: 1993
  ident: 10.1016/j.amc.2005.04.021_bib5
– volume: 7
  start-page: 89
  year: 1982
  ident: 10.1016/j.amc.2005.04.021_bib3
  article-title: Fuzzy relation equations on a finite set
  publication-title: Fuzzy Set. Syst.
  doi: 10.1016/0165-0114(82)90043-4
– ident: 10.1016/j.amc.2005.04.021_bib12
– volume: 107
  start-page: 148
  year: 1985
  ident: 10.1016/j.amc.2005.04.021_bib4
  article-title: Relational equations in totally ordered lattices and their complete resolution
  publication-title: J. Math. Appl.
– ident: 10.1016/j.amc.2005.04.021_bib9
– volume: 60
  start-page: 83
  year: 1993
  ident: 10.1016/j.amc.2005.04.021_bib1
  article-title: Some results on the resolution of fuzzy relation equations
  publication-title: Fuzzy Set. Syst.
  doi: 10.1016/0165-0114(93)90292-P
– volume: 119
  start-page: 1
  year: 2001
  ident: 10.1016/j.amc.2005.04.021_bib10
  article-title: Solving nonlinear optimization problems with fuzzy Relation equation constraints
  publication-title: Fuzzy Set. Syst.
  doi: 10.1016/S0165-0114(98)00471-0
– year: 1991
  ident: 10.1016/j.amc.2005.04.021_bib16
– volume: 26
  start-page: 93
  year: 1988
  ident: 10.1016/j.amc.2005.04.021_bib7
  article-title: Further contributions to the study of finite fuzzy relation equations
  publication-title: Fuzzy Set. Syst.
  doi: 10.1016/0165-0114(88)90008-5
– volume: 5
  start-page: 319
  year: 1985
  ident: 10.1016/j.amc.2005.04.021_bib11
  article-title: Algorithm for the solution of fuzzy relations
  publication-title: Fuzzy Set. Syst.
  doi: 10.1016/0165-0114(81)90059-2
SSID ssj0007614
Score 2.0047908
Snippet In this paper, an optimization model with a linear objective function subject to a system of the fuzzy relation equations with max–av composition is presented....
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 872
SubjectTerms Calculus of variations and optimal control
Exact sciences and technology
Fuzzy relation equations
Linear objective function optimization
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Sciences and techniques of general use
Title Linear objective function optimization with fuzzy relation equation constraints regarding max–av composition
URI https://dx.doi.org/10.1016/j.amc.2005.04.021
Volume 173
WOSCitedRecordID wos000236068400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQcQQjzV8qh84ESVldex4-RYoUWARIVEkfYWOY7TUnWzy7609MSdI_-QX8I4Y2fTRVSAxCVaWZuX58vnmfE8CHluUh5LpnlkRSoiMShZpBOpo0xYXipWZrw0TbMJdXycjkbZ-17vW8iFWV2ouk7X62z6X0UNYyBslzr7F-JuLwoD8BuEDkcQOxz_SPBgXbriPJPiHLns0C1dqBcCPYx93iU6YKvl5eUXn88CY_YzFv52sejzpnlEs6tw6lBUnx6O9TrERsR61USj-5Cvroob9NpxWxB2HpLnpsutjf-zyWyGiBz220igM7CUly63s-Gt_rZfgkeYmYnOspAwcyWe01lMUcwYcppFzk1VHMkEK5e2pIwNTjz6eIdiU2z1E1ZrLKT9y0KAPonzvh4b7zgTfYa52Fv1tT-4Z4obW8olKrtKCLtcyQxYfvfozXD0tl3YVYKl4sM7hE3yJlxw60a_U3NuT_UcPr4Ku6Z0VJmTu-SOt0HoEWLnHunZ-j659W4jrwekRhTRFkU0oIh2UUQdimiDIhpQRAOKaAdFtEURBRT9-Ppdr2gHPw_Jx1fDk5evI9-aIzIxV4uorIxT_cvE8XusB8aWZcV4VagKNEwhCy0HBWdCabAfqooZBZavBWtCJaXQQPyPyE49qe0eoZktCqWKQnKdCZ3JYpBWwlS2TBJluUz3CQszmRtft949-0UeAhTPc5h8109V5kzkMPn75EV7yhSLtlz3ZxHEk3utE7XJHLB03WkHV0S5uZFyLSMS8fjfrvuE3Nx8TU_JzmK2tM_IDbNafJrPDjwkfwJhFLbK
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+objective+function+optimization+with+fuzzy+relation+equation+constraints+regarding+max%E2%80%93av+composition&rft.jtitle=Applied+mathematics+and+computation&rft.au=Khorram%2C+E.&rft.au=Ghodousian%2C+A.&rft.date=2006-02-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=173&rft.issue=2&rft.spage=872&rft.epage=886&rft_id=info:doi/10.1016%2Fj.amc.2005.04.021&rft.externalDocID=S0096300305003991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon