The complexity of the matroid–greedoid partition problem
We show that the maximum matroid–greedoid partition problem is NP-hard to approximate to within 1 / 2 + ε for any ε > 0 , which matches the trivial factor 1/2 approximation algorithm. The main tool in our hardness of approximation result is an extractor code with polynomial rate, alphabet size an...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 410; číslo 8; s. 859 - 866 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier B.V
01.03.2009
Elsevier |
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We show that the maximum matroid–greedoid partition problem is NP-hard to approximate to within
1
/
2
+
ε
for any
ε
>
0
, which matches the trivial factor 1/2 approximation algorithm. The main tool in our hardness of approximation result is an
extractor code with polynomial rate, alphabet size and list size, together with an efficient algorithm for list-decoding. We show that the recent extractor construction of Guruswami, Umans and Vadhan [V. Guruswami, C. Umans, S.P. Vadhan, Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes, in: IEEE Conference on Computational Complexity, IEEE Computer Society, 2007, pp. 96–108] can be used to obtain a code with these properties.
We also show that the parameterized matroid–greedoid partition problem is fixed-parameter tractable. |
|---|---|
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2008.11.019 |