A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
During the past decade, hybrid algorithms combining evolutionary computation and constraint-handling techniques have shown to be effective to solve constrained optimization problems. For constrained optimization, the penalty function method has been regarded as one of the most popular constraint-han...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 186; číslo 2; s. 1407 - 1422 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
Elsevier Inc
15.03.2007
Elsevier |
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | During the past decade, hybrid algorithms combining evolutionary computation and constraint-handling techniques have shown to be effective to solve constrained optimization problems. For constrained optimization, the penalty function method has been regarded as one of the most popular constraint-handling technique so far, whereas its drawback lies in the determination of suitable penalty factors, which greatly weakens the efficiency of the method. As a novel population-based algorithm, particle swarm optimization (PSO) has gained wide applications in a variety of fields, especially for unconstrained optimization problems. In this paper, a hybrid PSO (HPSO) with a feasibility-based rule is proposed to solve constrained optimization problems. In contrast to the penalty function method, the rule requires no additional parameters and can guide the swarm to the feasible region quickly. In addition, to avoid the premature convergence, simulated annealing (SA) is applied to the best solution of the swarm to help the algorithm escape from local optima. Simulation and comparisons based on several well-studied benchmarks demonstrate the effectiveness, efficiency and robustness of the proposed HPSO. Moreover, the effects of several crucial parameters on the performance of the HPSO are studied as well. |
|---|---|
| AbstractList | During the past decade, hybrid algorithms combining evolutionary computation and constraint-handling techniques have shown to be effective to solve constrained optimization problems. For constrained optimization, the penalty function method has been regarded as one of the most popular constraint-handling technique so far, whereas its drawback lies in the determination of suitable penalty factors, which greatly weakens the efficiency of the method. As a novel population-based algorithm, particle swarm optimization (PSO) has gained wide applications in a variety of fields, especially for unconstrained optimization problems. In this paper, a hybrid PSO (HPSO) with a feasibility-based rule is proposed to solve constrained optimization problems. In contrast to the penalty function method, the rule requires no additional parameters and can guide the swarm to the feasible region quickly. In addition, to avoid the premature convergence, simulated annealing (SA) is applied to the best solution of the swarm to help the algorithm escape from local optima. Simulation and comparisons based on several well-studied benchmarks demonstrate the effectiveness, efficiency and robustness of the proposed HPSO. Moreover, the effects of several crucial parameters on the performance of the HPSO are studied as well. |
| Author | He, Qie Wang, Ling |
| Author_xml | – sequence: 1 givenname: Qie surname: He fullname: He, Qie email: heq@mails.tsinghua.edu.cn – sequence: 2 givenname: Ling surname: Wang fullname: Wang, Ling |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18674116$$DView record in Pascal Francis |
| BookMark | eNp9kE1r4zAQhsXShU3T_QF706VHuyNblmz2VEq_oNBLexYjWSITHDtIakv66-tsllJ6yGlgmOflneeUnYzT6Bn7I6AUINTFusSNKysAVYIuRS1_sIVodV00SnYnbAHQqaIGqH-x05TWAKCVkAtmLvlqZyP1fIsxkxs8T28YN3zaZtrQO2aaRv5GecWRB4-JLA2Ud4XF5HseX2YgTJG7aUw5Io3z8it6xn4GHJL__X8u2fPN9dPVXfHweHt_dflQuLrSueg7kBC0wwqkbayvtG4bZ4VuHIROWtsKbK1uAmivg1JV14k6SFuFUPcSsV6y80PuFpPDIUQcHSWzjbTBuDOiVVoKoeY7fbhzcUop-mAc5X9N9-0HI8DsfZq1mX2avU8D2sw-Z1J8Iz_DjzB_D4yfX38lH01y5Efne4reZdNPdIT-AI9akZs |
| CODEN | AMHCBQ |
| CitedBy_id | crossref_primary_10_1016_j_iswa_2022_200163 crossref_primary_10_1007_s42235_023_00437_8 crossref_primary_10_1002_apj_203 crossref_primary_10_1007_s00500_013_1028_4 crossref_primary_10_1007_s12293_021_00340_x crossref_primary_10_1109_ACCESS_2022_3186308 crossref_primary_10_1007_s10489_020_02071_x crossref_primary_10_1016_j_eswa_2020_113246 crossref_primary_10_1016_j_advengsoft_2015_11_004 crossref_primary_10_1016_j_eswa_2018_06_023 crossref_primary_10_1061__ASCE_WR_1943_5452_0001460 crossref_primary_10_1007_s00366_016_0457_y crossref_primary_10_1016_j_eswa_2015_05_050 crossref_primary_10_1016_j_knosys_2015_12_017 crossref_primary_10_1109_TAES_2019_2953417 crossref_primary_10_1093_jcde_qwad048 crossref_primary_10_4018_IJAMC_2019010101 crossref_primary_10_1016_j_asoc_2009_08_031 crossref_primary_10_1016_j_eswa_2010_03_046 crossref_primary_10_1007_s00500_014_1227_7 crossref_primary_10_1007_s00521_011_0747_7 crossref_primary_10_1007_s11081_016_9343_0 crossref_primary_10_1016_j_eswa_2014_06_032 crossref_primary_10_1016_j_asoc_2015_09_023 crossref_primary_10_1007_s10462_019_09691_x crossref_primary_10_1016_j_eswa_2013_04_028 crossref_primary_10_1016_j_asoc_2012_04_026 crossref_primary_10_1364_AO_495536 crossref_primary_10_1016_j_eswa_2021_115496 crossref_primary_10_1007_s11227_024_05930_3 crossref_primary_10_1155_2021_8548639 crossref_primary_10_1016_j_cma_2020_113487 crossref_primary_10_1108_EC_05_2024_0472 crossref_primary_10_1371_journal_pone_0144455 crossref_primary_10_1109_ACCESS_2020_3001194 crossref_primary_10_1016_j_amc_2015_06_036 crossref_primary_10_1016_j_eswa_2011_12_012 crossref_primary_10_1002_mcda_1491 crossref_primary_10_1007_s00366_021_01542_0 crossref_primary_10_1093_jcde_qwab082 crossref_primary_10_1016_j_asoc_2015_10_048 crossref_primary_10_1109_ACCESS_2021_3113323 crossref_primary_10_3233_JIFS_17308 crossref_primary_10_4018_jsir_2010010103 crossref_primary_10_1007_s10898_014_0157_3 crossref_primary_10_1007_s11771_014_2235_6 crossref_primary_10_3233_JIFS_179665 crossref_primary_10_1016_j_cie_2014_04_011 crossref_primary_10_1177_1687814018824930 crossref_primary_10_32604_cmc_2021_015294 crossref_primary_10_1155_2021_9210050 crossref_primary_10_1007_s00500_023_08011_4 crossref_primary_10_1007_s00500_019_03756_3 crossref_primary_10_1016_j_swevo_2011_10_001 crossref_primary_10_1007_s00500_015_1646_0 crossref_primary_10_1016_j_cie_2021_107250 crossref_primary_10_1016_j_asoc_2015_06_056 crossref_primary_10_1016_j_asoc_2015_09_007 crossref_primary_10_1007_s00170_010_2861_6 crossref_primary_10_1080_0952813X_2018_1430858 crossref_primary_10_1016_j_neucom_2023_02_010 crossref_primary_10_1109_TPWRS_2012_2211624 crossref_primary_10_1007_s10845_017_1294_6 crossref_primary_10_3233_JIFS_16463 crossref_primary_10_1155_2011_980216 crossref_primary_10_1016_j_eswa_2021_116158 crossref_primary_10_1007_s11227_021_03737_0 crossref_primary_10_1155_2018_9167414 crossref_primary_10_1016_j_ins_2012_01_008 crossref_primary_10_1007_s10845_022_01921_4 crossref_primary_10_1007_s41365_025_01683_7 crossref_primary_10_1016_j_compstruc_2016_03_001 crossref_primary_10_1541_ieejeiss_134_1333 crossref_primary_10_1016_j_cie_2021_107224 crossref_primary_10_1016_j_eswa_2021_114898 crossref_primary_10_1002_apj_524 crossref_primary_10_1016_j_cja_2020_09_002 crossref_primary_10_1108_MMMS_07_2015_0035 crossref_primary_10_1051_matecconf_20164009009 crossref_primary_10_1016_j_asoc_2016_06_012 crossref_primary_10_1016_j_cor_2010_10_014 crossref_primary_10_1016_j_eswa_2020_113698 crossref_primary_10_1109_TR_2024_3393985 crossref_primary_10_3390_app13053206 crossref_primary_10_4028_www_scientific_net_AMM_380_384_1294 crossref_primary_10_1016_j_ifacol_2017_12_038 crossref_primary_10_1016_j_strusafe_2010_03_001 crossref_primary_10_1016_j_cogsys_2025_101376 crossref_primary_10_1016_j_eswa_2008_02_039 crossref_primary_10_1007_s10100_010_0144_9 crossref_primary_10_1007_s10845_021_01872_2 crossref_primary_10_1016_j_knosys_2018_11_016 crossref_primary_10_1002_eng2_70048 crossref_primary_10_1093_jcde_qwac021 crossref_primary_10_1109_ACCESS_2020_2973197 crossref_primary_10_1016_j_eswa_2011_12_053 crossref_primary_10_3233_IDT_240306 crossref_primary_10_1080_0305215X_2021_1900154 crossref_primary_10_32604_cmes_2023_045170 crossref_primary_10_1007_s42235_021_0050_y crossref_primary_10_1016_j_cma_2012_12_009 crossref_primary_10_1016_j_eswa_2017_07_043 crossref_primary_10_7717_peerj_cs_333 crossref_primary_10_1007_s10845_009_0306_6 crossref_primary_10_1016_j_eswa_2023_119898 crossref_primary_10_1038_s41598_024_54384_3 crossref_primary_10_1093_jcde_qwac013 crossref_primary_10_1016_j_eswa_2024_125055 crossref_primary_10_1002_nme_2451 crossref_primary_10_1155_2019_2540102 crossref_primary_10_1108_APJML_08_2019_0485 crossref_primary_10_1155_2015_904364 crossref_primary_10_1155_2016_8627083 crossref_primary_10_4018_IJSIR_378562 crossref_primary_10_1007_s13042_021_01326_4 crossref_primary_10_1109_ACCESS_2025_3525603 crossref_primary_10_1007_s10845_016_1255_5 crossref_primary_10_1109_LCOMM_2021_3111602 crossref_primary_10_1016_j_eswa_2021_116355 crossref_primary_10_1016_j_energy_2021_121664 crossref_primary_10_1177_0954410019829368 crossref_primary_10_1016_j_cad_2013_07_007 crossref_primary_10_1016_j_asoc_2015_08_052 crossref_primary_10_1016_j_eswa_2022_118660 crossref_primary_10_1080_10168664_2022_2129121 crossref_primary_10_1007_s00521_018_3907_1 crossref_primary_10_1016_j_eswa_2018_04_012 crossref_primary_10_1016_j_knosys_2020_106552 crossref_primary_10_1016_j_amc_2008_05_033 crossref_primary_10_1016_j_jocs_2013_07_004 crossref_primary_10_1016_j_future_2019_02_028 crossref_primary_10_1177_0142331219842311 crossref_primary_10_1016_j_eswa_2013_07_067 crossref_primary_10_1080_0305215X_2013_875164 crossref_primary_10_1002_int_22707 crossref_primary_10_1016_j_engappai_2023_106778 crossref_primary_10_1109_ACCESS_2020_3014577 crossref_primary_10_1007_s10845_018_1403_1 crossref_primary_10_1002_cpe_7612 crossref_primary_10_1016_j_eswa_2020_113897 crossref_primary_10_1080_02331934_2013_793329 crossref_primary_10_1080_0952813X_2014_924589 crossref_primary_10_1109_ACCESS_2020_3047912 crossref_primary_10_1155_2021_2298215 crossref_primary_10_1155_2015_695948 crossref_primary_10_1080_0954898X_2024_2367481 crossref_primary_10_1016_j_asoc_2012_03_068 crossref_primary_10_1016_j_asoc_2017_07_023 crossref_primary_10_1016_j_eswa_2022_117444 crossref_primary_10_1016_j_asoc_2016_09_030 crossref_primary_10_1080_00207160802158710 crossref_primary_10_1109_TFUZZ_2019_2952754 crossref_primary_10_1080_24725854_2019_1680910 crossref_primary_10_1007_s00500_016_2419_0 crossref_primary_10_1080_0951192X_2020_1736717 crossref_primary_10_1002_cpe_6310 crossref_primary_10_1007_s12652_021_02892_9 crossref_primary_10_1016_j_compstruct_2017_11_074 crossref_primary_10_3390_electronics10050597 crossref_primary_10_1016_j_compchemeng_2011_09_018 crossref_primary_10_1016_j_cie_2021_107408 crossref_primary_10_1016_j_cor_2012_11_008 crossref_primary_10_1109_ACCESS_2021_3052800 crossref_primary_10_1007_s00500_023_08202_z crossref_primary_10_1016_j_asoc_2021_107892 crossref_primary_10_1080_13658816_2014_894638 crossref_primary_10_1016_j_advengsoft_2021_102973 crossref_primary_10_1002_ecj_10385 crossref_primary_10_1109_TEVC_2015_2428292 crossref_primary_10_1007_s00500_013_1183_7 crossref_primary_10_1016_j_eswa_2011_07_031 crossref_primary_10_1007_s40815_017_0362_6 crossref_primary_10_1016_j_amc_2013_05_065 crossref_primary_10_1177_0954406216681593 crossref_primary_10_4028_www_scientific_net_AMM_303_306_1519 crossref_primary_10_1109_ACCESS_2022_3173401 crossref_primary_10_1007_s11042_020_10255_3 crossref_primary_10_1016_j_eswa_2018_05_027 crossref_primary_10_1155_2020_5684939 crossref_primary_10_1007_s10845_021_01877_x crossref_primary_10_1093_jcde_qwae050 crossref_primary_10_1631_jzus_A1500255 crossref_primary_10_1007_s11356_022_24456_w crossref_primary_10_1109_TEVC_2013_2281531 crossref_primary_10_1016_j_asoc_2012_11_026 crossref_primary_10_1080_13658816_2011_643802 crossref_primary_10_1109_ACCESS_2019_2918753 crossref_primary_10_1007_s00366_021_01571_9 crossref_primary_10_1016_j_amc_2010_12_053 crossref_primary_10_1016_j_anucene_2013_05_044 crossref_primary_10_1080_18756891_2010_9727745 crossref_primary_10_1016_j_eswa_2012_12_045 crossref_primary_10_1007_s00521_014_1808_5 crossref_primary_10_1080_19942060_2022_2098826 crossref_primary_10_3389_fmats_2021_816610 crossref_primary_10_1007_s42235_022_00255_4 crossref_primary_10_4018_jsir_2011010101 crossref_primary_10_1016_j_eswa_2020_113617 crossref_primary_10_1007_s00366_021_01286_x crossref_primary_10_1016_j_engappai_2013_02_002 crossref_primary_10_1108_02644401011008577 crossref_primary_10_1007_s00500_021_06401_0 crossref_primary_10_1007_s42235_023_00386_2 crossref_primary_10_1177_0021998308097681 crossref_primary_10_32604_cmes_2021_017310 crossref_primary_10_1016_j_jcde_2017_02_005 crossref_primary_10_1016_j_amc_2012_03_025 crossref_primary_10_1007_s00366_021_01545_x crossref_primary_10_1007_s00500_017_2894_y crossref_primary_10_1007_s00366_020_01232_3 crossref_primary_10_1016_j_econmod_2013_03_006 crossref_primary_10_1007_s00707_024_04052_4 crossref_primary_10_1007_s00158_018_1978_3 crossref_primary_10_1016_j_petrol_2014_12_016 crossref_primary_10_1007_s10514_022_10050_z crossref_primary_10_1016_j_cor_2010_11_007 crossref_primary_10_3390_math11092217 crossref_primary_10_1016_j_eswa_2023_120240 crossref_primary_10_21078_JSSI_2019_532_18 crossref_primary_10_1007_s10845_014_0918_3 crossref_primary_10_1016_j_advengsoft_2011_03_018 crossref_primary_10_1016_j_amc_2008_12_002 crossref_primary_10_1007_s42235_022_00316_8 crossref_primary_10_1155_2020_5787642 crossref_primary_10_1007_s00521_022_06921_2 crossref_primary_10_3390_su9060953 crossref_primary_10_1038_s41598_024_79316_z crossref_primary_10_1016_j_compstruc_2012_07_010 crossref_primary_10_1007_s13198_015_0354_6 crossref_primary_10_1108_RPJ_01_2022_0038 crossref_primary_10_3233_JIFS_231114 crossref_primary_10_1007_s10660_013_9128_x |
| Cites_doi | 10.1016/S0045-7825(01)00323-1 10.1109/4235.873238 10.1016/S0166-3615(99)00046-9 10.1023/A:1008202821328 10.1080/03052150410001647966 10.1126/science.220.4598.671 10.1115/1.2919393 10.1115/1.2912596 10.1162/evco.1999.7.1.19 10.1016/S1474-0346(02)00011-3 10.1109/CEC.2004.1331060 10.1016/S0045-7825(99)00389-8 10.1177/003754979406200405 |
| ContentType | Journal Article |
| Copyright | 2006 Elsevier Inc. 2007 INIST-CNRS |
| Copyright_xml | – notice: 2006 Elsevier Inc. – notice: 2007 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.amc.2006.07.134 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1873-5649 |
| EndPage | 1422 |
| ExternalDocumentID | 18674116 10_1016_j_amc_2006_07_134 S0096300306010678 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c327t-d9040f7ca204b5be27785cb175c0f94bb81a8b75f07e7f6629913f4b2ff3d4aa3 |
| ISICitedReferencesCount | 406 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000246163800049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 |
| IngestDate | Mon Jul 21 09:15:34 EDT 2025 Tue Nov 18 22:19:07 EST 2025 Sat Nov 29 06:12:11 EST 2025 Fri Feb 23 02:19:05 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Feasibility-based rule Particle swarm optimization Simulated annealing Constrained optimization Constraint Evolutionary algorithm Optimization method Estimator robustness Determination Penalty method Convergence Particle Penalty function Efficiency Population Mathematical programming Addition Unconstrained optimization Benchmarks Algorithm Contrast Numerical analysis Simulation Applied mathematics Region Feasibility Performance Application Variety Gain Handling |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c327t-d9040f7ca204b5be27785cb175c0f94bb81a8b75f07e7f6629913f4b2ff3d4aa3 |
| PageCount | 16 |
| ParticipantIDs | pascalfrancis_primary_18674116 crossref_citationtrail_10_1016_j_amc_2006_07_134 crossref_primary_10_1016_j_amc_2006_07_134 elsevier_sciencedirect_doi_10_1016_j_amc_2006_07_134 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-03-15 |
| PublicationDateYYYYMMDD | 2007-03-15 |
| PublicationDate_xml | – month: 03 year: 2007 text: 2007-03-15 day: 15 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2007 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Joines, Houck (bib5) 1994 A.D. Belegundu, A study of mathematical programming methods for structural optimization, Department of Civil and Environmental Engineering, University of Iowa, IA, 1982. Coello, Becerra (bib12) 2004; 36 Horn, Nafpliotis, Goldberg (bib11) 1994 Kennedy, Eberhart (bib13) 1995 G.T. Pulido, C.A.C. Coello, A constraint-handling mechanism for particle swarm optimization, in: Proceedings of the 2004 Congress on Evolutionary Computation, 2004, pp.1396–1403. Michalewicz (bib3) 1995 He, Wang (bib7) 2006; 19 Coello, Montes (bib10) 2002; 16 K.E. Parsopoulos, M.N. Vrahatis, Particle swarm optimization method for constrained optimization problems, in: V. Kvasnička et al. (Ed.), Proceedings of the 2nd Euro-International Symposium on Computational Intelligence, Košice, Slovakia, 2002, pp. 214–220. Deb (bib19) 2000; 186 Kannan, Kramer (bib24) 1994; 116 Sandgren (bib26) 1990; 112 Ray, Liew (bib17) 2001 Kirkpatric, Gelatt, Vecchi (bib21) 1983; 220 Storn, Price (bib27) 1997; 11 X.H. Hu, R.C. Eberhart, Solving constrained nonlinear optimization problems with particle swarm optimization, in: N. Callaos (Ed.), Proceedings of the Sixth World Multiconference on Systematics, Cybernetics and Informatics, Orlando, FL, 2002, pp. 203–206. Homaifar, Qi, Lai (bib4) 1994; 62 Koziel, Michalewicz (bib8) 1999; 7 Kennedy, Eberhart, Shi (bib14) 2001 Bertsekas (bib1) 1982 Arora (bib23) 1989 Runarsson, Yao (bib9) 2000; 4 Coello (bib6) 2000; 41 Coello (bib2) 2002; 191 Wang (bib20) 2001 Deb (bib25) 1997 Sandgren (10.1016/j.amc.2006.07.134_bib26) 1990; 112 Horn (10.1016/j.amc.2006.07.134_bib11) 1994 Deb (10.1016/j.amc.2006.07.134_bib19) 2000; 186 Kannan (10.1016/j.amc.2006.07.134_bib24) 1994; 116 10.1016/j.amc.2006.07.134_bib18 Joines (10.1016/j.amc.2006.07.134_bib5) 1994 Coello (10.1016/j.amc.2006.07.134_bib10) 2002; 16 10.1016/j.amc.2006.07.134_bib22 Koziel (10.1016/j.amc.2006.07.134_bib8) 1999; 7 Kennedy (10.1016/j.amc.2006.07.134_bib14) 2001 Kirkpatric (10.1016/j.amc.2006.07.134_bib21) 1983; 220 Bertsekas (10.1016/j.amc.2006.07.134_bib1) 1982 Coello (10.1016/j.amc.2006.07.134_bib2) 2002; 191 Wang (10.1016/j.amc.2006.07.134_bib20) 2001 Runarsson (10.1016/j.amc.2006.07.134_bib9) 2000; 4 Deb (10.1016/j.amc.2006.07.134_bib25) 1997 Kennedy (10.1016/j.amc.2006.07.134_bib13) 1995 Coello (10.1016/j.amc.2006.07.134_bib12) 2004; 36 Homaifar (10.1016/j.amc.2006.07.134_bib4) 1994; 62 Arora (10.1016/j.amc.2006.07.134_bib23) 1989 Michalewicz (10.1016/j.amc.2006.07.134_bib3) 1995 Coello (10.1016/j.amc.2006.07.134_bib6) 2000; 41 10.1016/j.amc.2006.07.134_bib15 10.1016/j.amc.2006.07.134_bib16 Storn (10.1016/j.amc.2006.07.134_bib27) 1997; 11 He (10.1016/j.amc.2006.07.134_bib7) 2006; 19 Ray (10.1016/j.amc.2006.07.134_bib17) 2001 |
| References_xml | – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: bib21 article-title: Optimization by simulated annealing publication-title: Science – start-page: 497 year: 1997 end-page: 514 ident: bib25 article-title: GeneAS: a robust optimal design technique for mechanical component design publication-title: Evolutionary Algorithms in Engineering Applications – year: 1982 ident: bib1 article-title: Constrained Optimization and Lagrange Multiplier Methods – volume: 7 start-page: 19 year: 1999 end-page: 44 ident: bib8 article-title: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization publication-title: Evol. Comput. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib27 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – volume: 4 start-page: 284 year: 2000 end-page: 294 ident: bib9 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – reference: A.D. Belegundu, A study of mathematical programming methods for structural optimization, Department of Civil and Environmental Engineering, University of Iowa, IA, 1982. – volume: 41 start-page: 113 year: 2000 end-page: 127 ident: bib6 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. – year: 2001 ident: bib14 article-title: Swarm Intelligence – volume: 36 start-page: 219 year: 2004 end-page: 236 ident: bib12 article-title: Efficient evolutionary optimization through the use of a cultural algorithm publication-title: Eng. Optimiz. – start-page: 75 year: 2001 end-page: 80 ident: bib17 article-title: A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problems publication-title: Proceedings of the 2001 Congress on Evolutionary Computation – volume: 186 start-page: 311 year: 2000 end-page: 338 ident: bib19 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Meth. Appl. Mech. Eng. – start-page: 1942 year: 1995 end-page: 1948 ident: bib13 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE International Conference on Neural Networks – start-page: 135 year: 1995 end-page: 155 ident: bib3 article-title: A survey of constraint handling techniques in evolutionary computation methods publication-title: Proceedings of the 4th Annual Conference on Evolutionary Programming – year: 2001 ident: bib20 article-title: Intelligent Optimization Algorithms with Applications – start-page: 579 year: 1994 end-page: 584 ident: bib5 article-title: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs publication-title: Proceedings of First IEEE Conference on Evolutionary Computation – volume: 62 start-page: 242 year: 1994 end-page: 254 ident: bib4 article-title: Constrained optimization via genetic algorithms publication-title: Simulation – reference: G.T. Pulido, C.A.C. Coello, A constraint-handling mechanism for particle swarm optimization, in: Proceedings of the 2004 Congress on Evolutionary Computation, 2004, pp.1396–1403. – reference: X.H. Hu, R.C. Eberhart, Solving constrained nonlinear optimization problems with particle swarm optimization, in: N. Callaos (Ed.), Proceedings of the Sixth World Multiconference on Systematics, Cybernetics and Informatics, Orlando, FL, 2002, pp. 203–206. – volume: 116 start-page: 318 year: 1994 end-page: 320 ident: bib24 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. – volume: 16 start-page: 193 year: 2002 end-page: 203 ident: bib10 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Adv. Eng. Inform. – reference: K.E. Parsopoulos, M.N. Vrahatis, Particle swarm optimization method for constrained optimization problems, in: V. Kvasnička et al. (Ed.), Proceedings of the 2nd Euro-International Symposium on Computational Intelligence, Košice, Slovakia, 2002, pp. 214–220. – volume: 191 start-page: 1245 year: 2002 end-page: 1287 ident: bib2 article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 112 start-page: 223 year: 1990 end-page: 229 ident: bib26 article-title: Nonlinear integer and discrete programming in mechanical engineering systems publication-title: J. Mech. Des. – year: 1989 ident: bib23 article-title: Introduction to Optimum Design – volume: 19 year: 2006 ident: bib7 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng. Appl. Artif. Intell. – start-page: 82 year: 1994 end-page: 87 ident: bib11 article-title: A niched Pareto genetic algorithm for multiobjective optimization publication-title: Proceedings of First IEEE Conference on Evolutionary Computation – volume: 191 start-page: 1245 year: 2002 ident: 10.1016/j.amc.2006.07.134_bib2 article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/S0045-7825(01)00323-1 – volume: 4 start-page: 284 issue: 3 year: 2000 ident: 10.1016/j.amc.2006.07.134_bib9 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.873238 – year: 2001 ident: 10.1016/j.amc.2006.07.134_bib20 – volume: 41 start-page: 113 year: 2000 ident: 10.1016/j.amc.2006.07.134_bib6 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. doi: 10.1016/S0166-3615(99)00046-9 – ident: 10.1016/j.amc.2006.07.134_bib22 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.amc.2006.07.134_bib27 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – year: 2001 ident: 10.1016/j.amc.2006.07.134_bib14 – start-page: 82 year: 1994 ident: 10.1016/j.amc.2006.07.134_bib11 article-title: A niched Pareto genetic algorithm for multiobjective optimization – start-page: 497 year: 1997 ident: 10.1016/j.amc.2006.07.134_bib25 article-title: GeneAS: a robust optimal design technique for mechanical component design – ident: 10.1016/j.amc.2006.07.134_bib16 – start-page: 135 year: 1995 ident: 10.1016/j.amc.2006.07.134_bib3 article-title: A survey of constraint handling techniques in evolutionary computation methods – start-page: 579 year: 1994 ident: 10.1016/j.amc.2006.07.134_bib5 article-title: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs – year: 1982 ident: 10.1016/j.amc.2006.07.134_bib1 – start-page: 75 year: 2001 ident: 10.1016/j.amc.2006.07.134_bib17 article-title: A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problems – volume: 36 start-page: 219 issue: 2 year: 2004 ident: 10.1016/j.amc.2006.07.134_bib12 article-title: Efficient evolutionary optimization through the use of a cultural algorithm publication-title: Eng. Optimiz. doi: 10.1080/03052150410001647966 – volume: 220 start-page: 671 year: 1983 ident: 10.1016/j.amc.2006.07.134_bib21 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 116 start-page: 318 year: 1994 ident: 10.1016/j.amc.2006.07.134_bib24 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. doi: 10.1115/1.2919393 – volume: 112 start-page: 223 issue: 1 year: 1990 ident: 10.1016/j.amc.2006.07.134_bib26 article-title: Nonlinear integer and discrete programming in mechanical engineering systems publication-title: J. Mech. Des. doi: 10.1115/1.2912596 – volume: 7 start-page: 19 issue: 1 year: 1999 ident: 10.1016/j.amc.2006.07.134_bib8 article-title: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization publication-title: Evol. Comput. doi: 10.1162/evco.1999.7.1.19 – volume: 19 issue: 7 year: 2006 ident: 10.1016/j.amc.2006.07.134_bib7 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng. Appl. Artif. Intell. – volume: 16 start-page: 193 year: 2002 ident: 10.1016/j.amc.2006.07.134_bib10 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Adv. Eng. Inform. doi: 10.1016/S1474-0346(02)00011-3 – ident: 10.1016/j.amc.2006.07.134_bib15 – start-page: 1942 year: 1995 ident: 10.1016/j.amc.2006.07.134_bib13 article-title: Particle swarm optimization – ident: 10.1016/j.amc.2006.07.134_bib18 doi: 10.1109/CEC.2004.1331060 – volume: 186 start-page: 311 year: 2000 ident: 10.1016/j.amc.2006.07.134_bib19 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00389-8 – year: 1989 ident: 10.1016/j.amc.2006.07.134_bib23 – volume: 62 start-page: 242 issue: 4 year: 1994 ident: 10.1016/j.amc.2006.07.134_bib4 article-title: Constrained optimization via genetic algorithms publication-title: Simulation doi: 10.1177/003754979406200405 |
| SSID | ssj0007614 |
| Score | 2.3967445 |
| Snippet | During the past decade, hybrid algorithms combining evolutionary computation and constraint-handling techniques have shown to be effective to solve constrained... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 1407 |
| SubjectTerms | Calculus of variations and optimal control Constrained optimization Exact sciences and technology Feasibility-based rule Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical methods in mathematical programming, optimization and calculus of variations Particle swarm optimization Sciences and techniques of general use Simulated annealing |
| Title | A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization |
| URI | https://dx.doi.org/10.1016/j.amc.2006.07.134 |
| Volume | 186 |
| WOSCitedRecordID | wos000246163800049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcQqniKtlD5wIkoVRI7sXOMqkUtggqkIvYWbG-sUu2m0T76-PeM13Y2KVDgwCVKvPEm8vd5ZjKeGSP0RgiZ61gkYUwVDanmJOSTioSmlBiPFY1kKtebTbCTEz4e558Gg28-F-ZyyuqaX1_nzX-FGtoAbJM6-w9wt38KDXAOoMMRYIfjXwFfBGc3Jg0raNyPweJKzGfBBQiHmcu6dCltga6EC4-9CY0-mwTz1dSWAVfGcDT7R0Bjt2vXmvUm7Kyt_brweXLNqr_G__l4FGxqG3wwPrKvhStm5Z0OzERd2bRL6wlzarsrWXMTQxeRvmTNOhRKOnISPutYR-caR9Qv5bl1LZwfiJlyC0fsIHbez17t7Fs6rY00NPX6aBxn99BWwtKcD9FWcTwav2-1Ncts_Xf__n7lex0DeOuxv7NdHjViATNK261QOvbJ6WO07T4scGExf4IGVf0UPfy4QeYZKgtsqYE9NfCaGriLLzbUwAL_RA1sqIGBGrhDjV7X5-jLu9Hp4VHoNtgIFUnYMpzkIMI1UyKJKMzJKmGMp0qCRakinVMpeSy4ZKmOWMV0loHpEhNNZaI1mVAhyAs0rC_q6iXCWQoaPKVUkEpRxeAiyrUQisicU6KiHRT5oSuVqz5v3nRa-jDD8xJG2-yKmpURK2G0d9DbtktjS6_cdTP1eJTOdrQ2YQlUuqvbfg-7zYMcb3b_dMMeerCZIK_QcDlfVa_RfXW5_L6Y7zu2_QDBQ5t- |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+particle+swarm+optimization+with+a+feasibility-based+rule+for+constrained+optimization&rft.jtitle=Applied+mathematics+and+computation&rft.au=QIE+HE&rft.au=LING+WANG&rft.date=2007-03-15&rft.pub=Elsevier&rft.issn=0096-3003&rft.volume=186&rft.issue=2&rft.spage=1407&rft.epage=1422&rft_id=info:doi/10.1016%2Fj.amc.2006.07.134&rft.externalDBID=n%2Fa&rft.externalDocID=18674116 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |