A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization

During the past decade, hybrid algorithms combining evolutionary computation and constraint-handling techniques have shown to be effective to solve constrained optimization problems. For constrained optimization, the penalty function method has been regarded as one of the most popular constraint-han...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 186; číslo 2; s. 1407 - 1422
Hlavní autoři: He, Qie, Wang, Ling
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 15.03.2007
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract During the past decade, hybrid algorithms combining evolutionary computation and constraint-handling techniques have shown to be effective to solve constrained optimization problems. For constrained optimization, the penalty function method has been regarded as one of the most popular constraint-handling technique so far, whereas its drawback lies in the determination of suitable penalty factors, which greatly weakens the efficiency of the method. As a novel population-based algorithm, particle swarm optimization (PSO) has gained wide applications in a variety of fields, especially for unconstrained optimization problems. In this paper, a hybrid PSO (HPSO) with a feasibility-based rule is proposed to solve constrained optimization problems. In contrast to the penalty function method, the rule requires no additional parameters and can guide the swarm to the feasible region quickly. In addition, to avoid the premature convergence, simulated annealing (SA) is applied to the best solution of the swarm to help the algorithm escape from local optima. Simulation and comparisons based on several well-studied benchmarks demonstrate the effectiveness, efficiency and robustness of the proposed HPSO. Moreover, the effects of several crucial parameters on the performance of the HPSO are studied as well.
AbstractList During the past decade, hybrid algorithms combining evolutionary computation and constraint-handling techniques have shown to be effective to solve constrained optimization problems. For constrained optimization, the penalty function method has been regarded as one of the most popular constraint-handling technique so far, whereas its drawback lies in the determination of suitable penalty factors, which greatly weakens the efficiency of the method. As a novel population-based algorithm, particle swarm optimization (PSO) has gained wide applications in a variety of fields, especially for unconstrained optimization problems. In this paper, a hybrid PSO (HPSO) with a feasibility-based rule is proposed to solve constrained optimization problems. In contrast to the penalty function method, the rule requires no additional parameters and can guide the swarm to the feasible region quickly. In addition, to avoid the premature convergence, simulated annealing (SA) is applied to the best solution of the swarm to help the algorithm escape from local optima. Simulation and comparisons based on several well-studied benchmarks demonstrate the effectiveness, efficiency and robustness of the proposed HPSO. Moreover, the effects of several crucial parameters on the performance of the HPSO are studied as well.
Author He, Qie
Wang, Ling
Author_xml – sequence: 1
  givenname: Qie
  surname: He
  fullname: He, Qie
  email: heq@mails.tsinghua.edu.cn
– sequence: 2
  givenname: Ling
  surname: Wang
  fullname: Wang, Ling
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18674116$$DView record in Pascal Francis
BookMark eNp9kE1r4zAQhsXShU3T_QF706VHuyNblmz2VEq_oNBLexYjWSITHDtIakv66-tsllJ6yGlgmOflneeUnYzT6Bn7I6AUINTFusSNKysAVYIuRS1_sIVodV00SnYnbAHQqaIGqH-x05TWAKCVkAtmLvlqZyP1fIsxkxs8T28YN3zaZtrQO2aaRv5GecWRB4-JLA2Ud4XF5HseX2YgTJG7aUw5Io3z8it6xn4GHJL__X8u2fPN9dPVXfHweHt_dflQuLrSueg7kBC0wwqkbayvtG4bZ4VuHIROWtsKbK1uAmivg1JV14k6SFuFUPcSsV6y80PuFpPDIUQcHSWzjbTBuDOiVVoKoeY7fbhzcUop-mAc5X9N9-0HI8DsfZq1mX2avU8D2sw-Z1J8Iz_DjzB_D4yfX38lH01y5Efne4reZdNPdIT-AI9akZs
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1016_j_iswa_2022_200163
crossref_primary_10_1007_s42235_023_00437_8
crossref_primary_10_1002_apj_203
crossref_primary_10_1007_s00500_013_1028_4
crossref_primary_10_1007_s12293_021_00340_x
crossref_primary_10_1109_ACCESS_2022_3186308
crossref_primary_10_1007_s10489_020_02071_x
crossref_primary_10_1016_j_eswa_2020_113246
crossref_primary_10_1016_j_advengsoft_2015_11_004
crossref_primary_10_1016_j_eswa_2018_06_023
crossref_primary_10_1061__ASCE_WR_1943_5452_0001460
crossref_primary_10_1007_s00366_016_0457_y
crossref_primary_10_1016_j_eswa_2015_05_050
crossref_primary_10_1016_j_knosys_2015_12_017
crossref_primary_10_1109_TAES_2019_2953417
crossref_primary_10_1093_jcde_qwad048
crossref_primary_10_4018_IJAMC_2019010101
crossref_primary_10_1016_j_asoc_2009_08_031
crossref_primary_10_1016_j_eswa_2010_03_046
crossref_primary_10_1007_s00500_014_1227_7
crossref_primary_10_1007_s00521_011_0747_7
crossref_primary_10_1007_s11081_016_9343_0
crossref_primary_10_1016_j_eswa_2014_06_032
crossref_primary_10_1016_j_asoc_2015_09_023
crossref_primary_10_1007_s10462_019_09691_x
crossref_primary_10_1016_j_eswa_2013_04_028
crossref_primary_10_1016_j_asoc_2012_04_026
crossref_primary_10_1364_AO_495536
crossref_primary_10_1016_j_eswa_2021_115496
crossref_primary_10_1007_s11227_024_05930_3
crossref_primary_10_1155_2021_8548639
crossref_primary_10_1016_j_cma_2020_113487
crossref_primary_10_1108_EC_05_2024_0472
crossref_primary_10_1371_journal_pone_0144455
crossref_primary_10_1109_ACCESS_2020_3001194
crossref_primary_10_1016_j_amc_2015_06_036
crossref_primary_10_1016_j_eswa_2011_12_012
crossref_primary_10_1002_mcda_1491
crossref_primary_10_1007_s00366_021_01542_0
crossref_primary_10_1093_jcde_qwab082
crossref_primary_10_1016_j_asoc_2015_10_048
crossref_primary_10_1109_ACCESS_2021_3113323
crossref_primary_10_3233_JIFS_17308
crossref_primary_10_4018_jsir_2010010103
crossref_primary_10_1007_s10898_014_0157_3
crossref_primary_10_1007_s11771_014_2235_6
crossref_primary_10_3233_JIFS_179665
crossref_primary_10_1016_j_cie_2014_04_011
crossref_primary_10_1177_1687814018824930
crossref_primary_10_32604_cmc_2021_015294
crossref_primary_10_1155_2021_9210050
crossref_primary_10_1007_s00500_023_08011_4
crossref_primary_10_1007_s00500_019_03756_3
crossref_primary_10_1016_j_swevo_2011_10_001
crossref_primary_10_1007_s00500_015_1646_0
crossref_primary_10_1016_j_cie_2021_107250
crossref_primary_10_1016_j_asoc_2015_06_056
crossref_primary_10_1016_j_asoc_2015_09_007
crossref_primary_10_1007_s00170_010_2861_6
crossref_primary_10_1080_0952813X_2018_1430858
crossref_primary_10_1016_j_neucom_2023_02_010
crossref_primary_10_1109_TPWRS_2012_2211624
crossref_primary_10_1007_s10845_017_1294_6
crossref_primary_10_3233_JIFS_16463
crossref_primary_10_1155_2011_980216
crossref_primary_10_1016_j_eswa_2021_116158
crossref_primary_10_1007_s11227_021_03737_0
crossref_primary_10_1155_2018_9167414
crossref_primary_10_1016_j_ins_2012_01_008
crossref_primary_10_1007_s10845_022_01921_4
crossref_primary_10_1007_s41365_025_01683_7
crossref_primary_10_1016_j_compstruc_2016_03_001
crossref_primary_10_1541_ieejeiss_134_1333
crossref_primary_10_1016_j_cie_2021_107224
crossref_primary_10_1016_j_eswa_2021_114898
crossref_primary_10_1002_apj_524
crossref_primary_10_1016_j_cja_2020_09_002
crossref_primary_10_1108_MMMS_07_2015_0035
crossref_primary_10_1051_matecconf_20164009009
crossref_primary_10_1016_j_asoc_2016_06_012
crossref_primary_10_1016_j_cor_2010_10_014
crossref_primary_10_1016_j_eswa_2020_113698
crossref_primary_10_1109_TR_2024_3393985
crossref_primary_10_3390_app13053206
crossref_primary_10_4028_www_scientific_net_AMM_380_384_1294
crossref_primary_10_1016_j_ifacol_2017_12_038
crossref_primary_10_1016_j_strusafe_2010_03_001
crossref_primary_10_1016_j_cogsys_2025_101376
crossref_primary_10_1016_j_eswa_2008_02_039
crossref_primary_10_1007_s10100_010_0144_9
crossref_primary_10_1007_s10845_021_01872_2
crossref_primary_10_1016_j_knosys_2018_11_016
crossref_primary_10_1002_eng2_70048
crossref_primary_10_1093_jcde_qwac021
crossref_primary_10_1109_ACCESS_2020_2973197
crossref_primary_10_1016_j_eswa_2011_12_053
crossref_primary_10_3233_IDT_240306
crossref_primary_10_1080_0305215X_2021_1900154
crossref_primary_10_32604_cmes_2023_045170
crossref_primary_10_1007_s42235_021_0050_y
crossref_primary_10_1016_j_cma_2012_12_009
crossref_primary_10_1016_j_eswa_2017_07_043
crossref_primary_10_7717_peerj_cs_333
crossref_primary_10_1007_s10845_009_0306_6
crossref_primary_10_1016_j_eswa_2023_119898
crossref_primary_10_1038_s41598_024_54384_3
crossref_primary_10_1093_jcde_qwac013
crossref_primary_10_1016_j_eswa_2024_125055
crossref_primary_10_1002_nme_2451
crossref_primary_10_1155_2019_2540102
crossref_primary_10_1108_APJML_08_2019_0485
crossref_primary_10_1155_2015_904364
crossref_primary_10_1155_2016_8627083
crossref_primary_10_4018_IJSIR_378562
crossref_primary_10_1007_s13042_021_01326_4
crossref_primary_10_1109_ACCESS_2025_3525603
crossref_primary_10_1007_s10845_016_1255_5
crossref_primary_10_1109_LCOMM_2021_3111602
crossref_primary_10_1016_j_eswa_2021_116355
crossref_primary_10_1016_j_energy_2021_121664
crossref_primary_10_1177_0954410019829368
crossref_primary_10_1016_j_cad_2013_07_007
crossref_primary_10_1016_j_asoc_2015_08_052
crossref_primary_10_1016_j_eswa_2022_118660
crossref_primary_10_1080_10168664_2022_2129121
crossref_primary_10_1007_s00521_018_3907_1
crossref_primary_10_1016_j_eswa_2018_04_012
crossref_primary_10_1016_j_knosys_2020_106552
crossref_primary_10_1016_j_amc_2008_05_033
crossref_primary_10_1016_j_jocs_2013_07_004
crossref_primary_10_1016_j_future_2019_02_028
crossref_primary_10_1177_0142331219842311
crossref_primary_10_1016_j_eswa_2013_07_067
crossref_primary_10_1080_0305215X_2013_875164
crossref_primary_10_1002_int_22707
crossref_primary_10_1016_j_engappai_2023_106778
crossref_primary_10_1109_ACCESS_2020_3014577
crossref_primary_10_1007_s10845_018_1403_1
crossref_primary_10_1002_cpe_7612
crossref_primary_10_1016_j_eswa_2020_113897
crossref_primary_10_1080_02331934_2013_793329
crossref_primary_10_1080_0952813X_2014_924589
crossref_primary_10_1109_ACCESS_2020_3047912
crossref_primary_10_1155_2021_2298215
crossref_primary_10_1155_2015_695948
crossref_primary_10_1080_0954898X_2024_2367481
crossref_primary_10_1016_j_asoc_2012_03_068
crossref_primary_10_1016_j_asoc_2017_07_023
crossref_primary_10_1016_j_eswa_2022_117444
crossref_primary_10_1016_j_asoc_2016_09_030
crossref_primary_10_1080_00207160802158710
crossref_primary_10_1109_TFUZZ_2019_2952754
crossref_primary_10_1080_24725854_2019_1680910
crossref_primary_10_1007_s00500_016_2419_0
crossref_primary_10_1080_0951192X_2020_1736717
crossref_primary_10_1002_cpe_6310
crossref_primary_10_1007_s12652_021_02892_9
crossref_primary_10_1016_j_compstruct_2017_11_074
crossref_primary_10_3390_electronics10050597
crossref_primary_10_1016_j_compchemeng_2011_09_018
crossref_primary_10_1016_j_cie_2021_107408
crossref_primary_10_1016_j_cor_2012_11_008
crossref_primary_10_1109_ACCESS_2021_3052800
crossref_primary_10_1007_s00500_023_08202_z
crossref_primary_10_1016_j_asoc_2021_107892
crossref_primary_10_1080_13658816_2014_894638
crossref_primary_10_1016_j_advengsoft_2021_102973
crossref_primary_10_1002_ecj_10385
crossref_primary_10_1109_TEVC_2015_2428292
crossref_primary_10_1007_s00500_013_1183_7
crossref_primary_10_1016_j_eswa_2011_07_031
crossref_primary_10_1007_s40815_017_0362_6
crossref_primary_10_1016_j_amc_2013_05_065
crossref_primary_10_1177_0954406216681593
crossref_primary_10_4028_www_scientific_net_AMM_303_306_1519
crossref_primary_10_1109_ACCESS_2022_3173401
crossref_primary_10_1007_s11042_020_10255_3
crossref_primary_10_1016_j_eswa_2018_05_027
crossref_primary_10_1155_2020_5684939
crossref_primary_10_1007_s10845_021_01877_x
crossref_primary_10_1093_jcde_qwae050
crossref_primary_10_1631_jzus_A1500255
crossref_primary_10_1007_s11356_022_24456_w
crossref_primary_10_1109_TEVC_2013_2281531
crossref_primary_10_1016_j_asoc_2012_11_026
crossref_primary_10_1080_13658816_2011_643802
crossref_primary_10_1109_ACCESS_2019_2918753
crossref_primary_10_1007_s00366_021_01571_9
crossref_primary_10_1016_j_amc_2010_12_053
crossref_primary_10_1016_j_anucene_2013_05_044
crossref_primary_10_1080_18756891_2010_9727745
crossref_primary_10_1016_j_eswa_2012_12_045
crossref_primary_10_1007_s00521_014_1808_5
crossref_primary_10_1080_19942060_2022_2098826
crossref_primary_10_3389_fmats_2021_816610
crossref_primary_10_1007_s42235_022_00255_4
crossref_primary_10_4018_jsir_2011010101
crossref_primary_10_1016_j_eswa_2020_113617
crossref_primary_10_1007_s00366_021_01286_x
crossref_primary_10_1016_j_engappai_2013_02_002
crossref_primary_10_1108_02644401011008577
crossref_primary_10_1007_s00500_021_06401_0
crossref_primary_10_1007_s42235_023_00386_2
crossref_primary_10_1177_0021998308097681
crossref_primary_10_32604_cmes_2021_017310
crossref_primary_10_1016_j_jcde_2017_02_005
crossref_primary_10_1016_j_amc_2012_03_025
crossref_primary_10_1007_s00366_021_01545_x
crossref_primary_10_1007_s00500_017_2894_y
crossref_primary_10_1007_s00366_020_01232_3
crossref_primary_10_1016_j_econmod_2013_03_006
crossref_primary_10_1007_s00707_024_04052_4
crossref_primary_10_1007_s00158_018_1978_3
crossref_primary_10_1016_j_petrol_2014_12_016
crossref_primary_10_1007_s10514_022_10050_z
crossref_primary_10_1016_j_cor_2010_11_007
crossref_primary_10_3390_math11092217
crossref_primary_10_1016_j_eswa_2023_120240
crossref_primary_10_21078_JSSI_2019_532_18
crossref_primary_10_1007_s10845_014_0918_3
crossref_primary_10_1016_j_advengsoft_2011_03_018
crossref_primary_10_1016_j_amc_2008_12_002
crossref_primary_10_1007_s42235_022_00316_8
crossref_primary_10_1155_2020_5787642
crossref_primary_10_1007_s00521_022_06921_2
crossref_primary_10_3390_su9060953
crossref_primary_10_1038_s41598_024_79316_z
crossref_primary_10_1016_j_compstruc_2012_07_010
crossref_primary_10_1007_s13198_015_0354_6
crossref_primary_10_1108_RPJ_01_2022_0038
crossref_primary_10_3233_JIFS_231114
crossref_primary_10_1007_s10660_013_9128_x
Cites_doi 10.1016/S0045-7825(01)00323-1
10.1109/4235.873238
10.1016/S0166-3615(99)00046-9
10.1023/A:1008202821328
10.1080/03052150410001647966
10.1126/science.220.4598.671
10.1115/1.2919393
10.1115/1.2912596
10.1162/evco.1999.7.1.19
10.1016/S1474-0346(02)00011-3
10.1109/CEC.2004.1331060
10.1016/S0045-7825(99)00389-8
10.1177/003754979406200405
ContentType Journal Article
Copyright 2006 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2006.07.134
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 1422
ExternalDocumentID 18674116
10_1016_j_amc_2006_07_134
S0096300306010678
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-d9040f7ca204b5be27785cb175c0f94bb81a8b75f07e7f6629913f4b2ff3d4aa3
ISICitedReferencesCount 406
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000246163800049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Mon Jul 21 09:15:34 EDT 2025
Tue Nov 18 22:19:07 EST 2025
Sat Nov 29 06:12:11 EST 2025
Fri Feb 23 02:19:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Feasibility-based rule
Particle swarm optimization
Simulated annealing
Constrained optimization
Constraint
Evolutionary algorithm
Optimization method
Estimator robustness
Determination
Penalty method
Convergence
Particle
Penalty function
Efficiency
Population
Mathematical programming
Addition
Unconstrained optimization
Benchmarks
Algorithm
Contrast
Numerical analysis
Simulation
Applied mathematics
Region
Feasibility
Performance
Application
Variety
Gain
Handling
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-d9040f7ca204b5be27785cb175c0f94bb81a8b75f07e7f6629913f4b2ff3d4aa3
PageCount 16
ParticipantIDs pascalfrancis_primary_18674116
crossref_citationtrail_10_1016_j_amc_2006_07_134
crossref_primary_10_1016_j_amc_2006_07_134
elsevier_sciencedirect_doi_10_1016_j_amc_2006_07_134
PublicationCentury 2000
PublicationDate 2007-03-15
PublicationDateYYYYMMDD 2007-03-15
PublicationDate_xml – month: 03
  year: 2007
  text: 2007-03-15
  day: 15
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2007
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Joines, Houck (bib5) 1994
A.D. Belegundu, A study of mathematical programming methods for structural optimization, Department of Civil and Environmental Engineering, University of Iowa, IA, 1982.
Coello, Becerra (bib12) 2004; 36
Horn, Nafpliotis, Goldberg (bib11) 1994
Kennedy, Eberhart (bib13) 1995
G.T. Pulido, C.A.C. Coello, A constraint-handling mechanism for particle swarm optimization, in: Proceedings of the 2004 Congress on Evolutionary Computation, 2004, pp.1396–1403.
Michalewicz (bib3) 1995
He, Wang (bib7) 2006; 19
Coello, Montes (bib10) 2002; 16
K.E. Parsopoulos, M.N. Vrahatis, Particle swarm optimization method for constrained optimization problems, in: V. Kvasnička et al. (Ed.), Proceedings of the 2nd Euro-International Symposium on Computational Intelligence, Košice, Slovakia, 2002, pp. 214–220.
Deb (bib19) 2000; 186
Kannan, Kramer (bib24) 1994; 116
Sandgren (bib26) 1990; 112
Ray, Liew (bib17) 2001
Kirkpatric, Gelatt, Vecchi (bib21) 1983; 220
Storn, Price (bib27) 1997; 11
X.H. Hu, R.C. Eberhart, Solving constrained nonlinear optimization problems with particle swarm optimization, in: N. Callaos (Ed.), Proceedings of the Sixth World Multiconference on Systematics, Cybernetics and Informatics, Orlando, FL, 2002, pp. 203–206.
Homaifar, Qi, Lai (bib4) 1994; 62
Koziel, Michalewicz (bib8) 1999; 7
Kennedy, Eberhart, Shi (bib14) 2001
Bertsekas (bib1) 1982
Arora (bib23) 1989
Runarsson, Yao (bib9) 2000; 4
Coello (bib6) 2000; 41
Coello (bib2) 2002; 191
Wang (bib20) 2001
Deb (bib25) 1997
Sandgren (10.1016/j.amc.2006.07.134_bib26) 1990; 112
Horn (10.1016/j.amc.2006.07.134_bib11) 1994
Deb (10.1016/j.amc.2006.07.134_bib19) 2000; 186
Kannan (10.1016/j.amc.2006.07.134_bib24) 1994; 116
10.1016/j.amc.2006.07.134_bib18
Joines (10.1016/j.amc.2006.07.134_bib5) 1994
Coello (10.1016/j.amc.2006.07.134_bib10) 2002; 16
10.1016/j.amc.2006.07.134_bib22
Koziel (10.1016/j.amc.2006.07.134_bib8) 1999; 7
Kennedy (10.1016/j.amc.2006.07.134_bib14) 2001
Kirkpatric (10.1016/j.amc.2006.07.134_bib21) 1983; 220
Bertsekas (10.1016/j.amc.2006.07.134_bib1) 1982
Coello (10.1016/j.amc.2006.07.134_bib2) 2002; 191
Wang (10.1016/j.amc.2006.07.134_bib20) 2001
Runarsson (10.1016/j.amc.2006.07.134_bib9) 2000; 4
Deb (10.1016/j.amc.2006.07.134_bib25) 1997
Kennedy (10.1016/j.amc.2006.07.134_bib13) 1995
Coello (10.1016/j.amc.2006.07.134_bib12) 2004; 36
Homaifar (10.1016/j.amc.2006.07.134_bib4) 1994; 62
Arora (10.1016/j.amc.2006.07.134_bib23) 1989
Michalewicz (10.1016/j.amc.2006.07.134_bib3) 1995
Coello (10.1016/j.amc.2006.07.134_bib6) 2000; 41
10.1016/j.amc.2006.07.134_bib15
10.1016/j.amc.2006.07.134_bib16
Storn (10.1016/j.amc.2006.07.134_bib27) 1997; 11
He (10.1016/j.amc.2006.07.134_bib7) 2006; 19
Ray (10.1016/j.amc.2006.07.134_bib17) 2001
References_xml – volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: bib21
  article-title: Optimization by simulated annealing
  publication-title: Science
– start-page: 497
  year: 1997
  end-page: 514
  ident: bib25
  article-title: GeneAS: a robust optimal design technique for mechanical component design
  publication-title: Evolutionary Algorithms in Engineering Applications
– year: 1982
  ident: bib1
  article-title: Constrained Optimization and Lagrange Multiplier Methods
– volume: 7
  start-page: 19
  year: 1999
  end-page: 44
  ident: bib8
  article-title: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization
  publication-title: Evol. Comput.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib27
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 4
  start-page: 284
  year: 2000
  end-page: 294
  ident: bib9
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: A.D. Belegundu, A study of mathematical programming methods for structural optimization, Department of Civil and Environmental Engineering, University of Iowa, IA, 1982.
– volume: 41
  start-page: 113
  year: 2000
  end-page: 127
  ident: bib6
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
– year: 2001
  ident: bib14
  article-title: Swarm Intelligence
– volume: 36
  start-page: 219
  year: 2004
  end-page: 236
  ident: bib12
  article-title: Efficient evolutionary optimization through the use of a cultural algorithm
  publication-title: Eng. Optimiz.
– start-page: 75
  year: 2001
  end-page: 80
  ident: bib17
  article-title: A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problems
  publication-title: Proceedings of the 2001 Congress on Evolutionary Computation
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: bib19
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Meth. Appl. Mech. Eng.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib13
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE International Conference on Neural Networks
– start-page: 135
  year: 1995
  end-page: 155
  ident: bib3
  article-title: A survey of constraint handling techniques in evolutionary computation methods
  publication-title: Proceedings of the 4th Annual Conference on Evolutionary Programming
– year: 2001
  ident: bib20
  article-title: Intelligent Optimization Algorithms with Applications
– start-page: 579
  year: 1994
  end-page: 584
  ident: bib5
  article-title: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs
  publication-title: Proceedings of First IEEE Conference on Evolutionary Computation
– volume: 62
  start-page: 242
  year: 1994
  end-page: 254
  ident: bib4
  article-title: Constrained optimization via genetic algorithms
  publication-title: Simulation
– reference: G.T. Pulido, C.A.C. Coello, A constraint-handling mechanism for particle swarm optimization, in: Proceedings of the 2004 Congress on Evolutionary Computation, 2004, pp.1396–1403.
– reference: X.H. Hu, R.C. Eberhart, Solving constrained nonlinear optimization problems with particle swarm optimization, in: N. Callaos (Ed.), Proceedings of the Sixth World Multiconference on Systematics, Cybernetics and Informatics, Orlando, FL, 2002, pp. 203–206.
– volume: 116
  start-page: 318
  year: 1994
  end-page: 320
  ident: bib24
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J. Mech. Des.
– volume: 16
  start-page: 193
  year: 2002
  end-page: 203
  ident: bib10
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Adv. Eng. Inform.
– reference: K.E. Parsopoulos, M.N. Vrahatis, Particle swarm optimization method for constrained optimization problems, in: V. Kvasnička et al. (Ed.), Proceedings of the 2nd Euro-International Symposium on Computational Intelligence, Košice, Slovakia, 2002, pp. 214–220.
– volume: 191
  start-page: 1245
  year: 2002
  end-page: 1287
  ident: bib2
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 112
  start-page: 223
  year: 1990
  end-page: 229
  ident: bib26
  article-title: Nonlinear integer and discrete programming in mechanical engineering systems
  publication-title: J. Mech. Des.
– year: 1989
  ident: bib23
  article-title: Introduction to Optimum Design
– volume: 19
  year: 2006
  ident: bib7
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 82
  year: 1994
  end-page: 87
  ident: bib11
  article-title: A niched Pareto genetic algorithm for multiobjective optimization
  publication-title: Proceedings of First IEEE Conference on Evolutionary Computation
– volume: 191
  start-page: 1245
  year: 2002
  ident: 10.1016/j.amc.2006.07.134_bib2
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(01)00323-1
– volume: 4
  start-page: 284
  issue: 3
  year: 2000
  ident: 10.1016/j.amc.2006.07.134_bib9
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.873238
– year: 2001
  ident: 10.1016/j.amc.2006.07.134_bib20
– volume: 41
  start-page: 113
  year: 2000
  ident: 10.1016/j.amc.2006.07.134_bib6
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(99)00046-9
– ident: 10.1016/j.amc.2006.07.134_bib22
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.amc.2006.07.134_bib27
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– year: 2001
  ident: 10.1016/j.amc.2006.07.134_bib14
– start-page: 82
  year: 1994
  ident: 10.1016/j.amc.2006.07.134_bib11
  article-title: A niched Pareto genetic algorithm for multiobjective optimization
– start-page: 497
  year: 1997
  ident: 10.1016/j.amc.2006.07.134_bib25
  article-title: GeneAS: a robust optimal design technique for mechanical component design
– ident: 10.1016/j.amc.2006.07.134_bib16
– start-page: 135
  year: 1995
  ident: 10.1016/j.amc.2006.07.134_bib3
  article-title: A survey of constraint handling techniques in evolutionary computation methods
– start-page: 579
  year: 1994
  ident: 10.1016/j.amc.2006.07.134_bib5
  article-title: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs
– year: 1982
  ident: 10.1016/j.amc.2006.07.134_bib1
– start-page: 75
  year: 2001
  ident: 10.1016/j.amc.2006.07.134_bib17
  article-title: A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problems
– volume: 36
  start-page: 219
  issue: 2
  year: 2004
  ident: 10.1016/j.amc.2006.07.134_bib12
  article-title: Efficient evolutionary optimization through the use of a cultural algorithm
  publication-title: Eng. Optimiz.
  doi: 10.1080/03052150410001647966
– volume: 220
  start-page: 671
  year: 1983
  ident: 10.1016/j.amc.2006.07.134_bib21
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 116
  start-page: 318
  year: 1994
  ident: 10.1016/j.amc.2006.07.134_bib24
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2919393
– volume: 112
  start-page: 223
  issue: 1
  year: 1990
  ident: 10.1016/j.amc.2006.07.134_bib26
  article-title: Nonlinear integer and discrete programming in mechanical engineering systems
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2912596
– volume: 7
  start-page: 19
  issue: 1
  year: 1999
  ident: 10.1016/j.amc.2006.07.134_bib8
  article-title: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1999.7.1.19
– volume: 19
  issue: 7
  year: 2006
  ident: 10.1016/j.amc.2006.07.134_bib7
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 16
  start-page: 193
  year: 2002
  ident: 10.1016/j.amc.2006.07.134_bib10
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/S1474-0346(02)00011-3
– ident: 10.1016/j.amc.2006.07.134_bib15
– start-page: 1942
  year: 1995
  ident: 10.1016/j.amc.2006.07.134_bib13
  article-title: Particle swarm optimization
– ident: 10.1016/j.amc.2006.07.134_bib18
  doi: 10.1109/CEC.2004.1331060
– volume: 186
  start-page: 311
  year: 2000
  ident: 10.1016/j.amc.2006.07.134_bib19
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00389-8
– year: 1989
  ident: 10.1016/j.amc.2006.07.134_bib23
– volume: 62
  start-page: 242
  issue: 4
  year: 1994
  ident: 10.1016/j.amc.2006.07.134_bib4
  article-title: Constrained optimization via genetic algorithms
  publication-title: Simulation
  doi: 10.1177/003754979406200405
SSID ssj0007614
Score 2.3967445
Snippet During the past decade, hybrid algorithms combining evolutionary computation and constraint-handling techniques have shown to be effective to solve constrained...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1407
SubjectTerms Calculus of variations and optimal control
Constrained optimization
Exact sciences and technology
Feasibility-based rule
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Particle swarm optimization
Sciences and techniques of general use
Simulated annealing
Title A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
URI https://dx.doi.org/10.1016/j.amc.2006.07.134
Volume 186
WOSCitedRecordID wos000246163800049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcQqniKtlD5wIkoVRI7sXOMqkUtggqkIvYWbG-sUu2m0T76-PeM13Y2KVDgwCVKvPEm8vd5ZjKeGSP0RgiZ61gkYUwVDanmJOSTioSmlBiPFY1kKtebTbCTEz4e558Gg28-F-ZyyuqaX1_nzX-FGtoAbJM6-w9wt38KDXAOoMMRYIfjXwFfBGc3Jg0raNyPweJKzGfBBQiHmcu6dCltga6EC4-9CY0-mwTz1dSWAVfGcDT7R0Bjt2vXmvUm7Kyt_brweXLNqr_G__l4FGxqG3wwPrKvhStm5Z0OzERd2bRL6wlzarsrWXMTQxeRvmTNOhRKOnISPutYR-caR9Qv5bl1LZwfiJlyC0fsIHbez17t7Fs6rY00NPX6aBxn99BWwtKcD9FWcTwav2-1Ncts_Xf__n7lex0DeOuxv7NdHjViATNK261QOvbJ6WO07T4scGExf4IGVf0UPfy4QeYZKgtsqYE9NfCaGriLLzbUwAL_RA1sqIGBGrhDjV7X5-jLu9Hp4VHoNtgIFUnYMpzkIMI1UyKJKMzJKmGMp0qCRakinVMpeSy4ZKmOWMV0loHpEhNNZaI1mVAhyAs0rC_q6iXCWQoaPKVUkEpRxeAiyrUQisicU6KiHRT5oSuVqz5v3nRa-jDD8xJG2-yKmpURK2G0d9DbtktjS6_cdTP1eJTOdrQ2YQlUuqvbfg-7zYMcb3b_dMMeerCZIK_QcDlfVa_RfXW5_L6Y7zu2_QDBQ5t-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+particle+swarm+optimization+with+a+feasibility-based+rule+for+constrained+optimization&rft.jtitle=Applied+mathematics+and+computation&rft.au=QIE+HE&rft.au=LING+WANG&rft.date=2007-03-15&rft.pub=Elsevier&rft.issn=0096-3003&rft.volume=186&rft.issue=2&rft.spage=1407&rft.epage=1422&rft_id=info:doi/10.1016%2Fj.amc.2006.07.134&rft.externalDBID=n%2Fa&rft.externalDocID=18674116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon