A Mixed Method for the Mixed Initial Boundary Value Problems of Equations of Semiconductor Devices
In this article, the approximation of nonstationary equations of the semiconductor device with mixed boundary conditions is considered. The approximate procedure of this system using a Galerkin method that makes use of a mixed finite element method for the potential equation combined with a finite e...
Uloženo v:
| Vydáno v: | SIAM journal on numerical analysis Ročník 31; číslo 3; s. 731 - 744 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.06.1994
|
| Témata: | |
| ISSN: | 0036-1429, 1095-7170 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this article, the approximation of nonstationary equations of the semiconductor device with mixed boundary conditions is considered. The approximate procedure of this system using a Galerkin method that makes use of a mixed finite element method for the potential equation combined with a finite element method for the concentration equations is presented. Due to the poor regularity properties of the solutions to the semiconductor equations caused by mixed boundary conditions, a nonstandard analysis for the semidiscrete Galerkin procedure is used. Existence and uniqueness of the approximate solution is proved. A convergence analysis is also given for the method. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/0731039 |