Two-stage genetic programming (2SGP) for the credit scoring model

Credit scoring models have been widely studied in the areas of statistics, machine learning, and artificial intelligence (AI). Many novel approaches such as artificial neural networks (ANNs), rough sets, or decision trees have been proposed to increase the accuracy of credit scoring models. Since an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 174; číslo 2; s. 1039 - 1053
Hlavní autoři: Huang, Jih-Jeng, Tzeng, Gwo-Hshiung, Ong, Chorng-Shyong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 15.03.2006
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Credit scoring models have been widely studied in the areas of statistics, machine learning, and artificial intelligence (AI). Many novel approaches such as artificial neural networks (ANNs), rough sets, or decision trees have been proposed to increase the accuracy of credit scoring models. Since an improvement in accuracy of a fraction of a percent might translate into significant savings, a more sophisticated model should be proposed for significantly improving the accuracy of the credit scoring models. In this paper, two-stage genetic programming (2SGP) is proposed to deal with the credit scoring problem by incorporating the advantages of the IF–THEN rules and the discriminant function. On the basis of the numerical results, we can conclude that 2SGP can provide the better accuracy than other models.
AbstractList Credit scoring models have been widely studied in the areas of statistics, machine learning, and artificial intelligence (AI). Many novel approaches such as artificial neural networks (ANNs), rough sets, or decision trees have been proposed to increase the accuracy of credit scoring models. Since an improvement in accuracy of a fraction of a percent might translate into significant savings, a more sophisticated model should be proposed for significantly improving the accuracy of the credit scoring models. In this paper, two-stage genetic programming (2SGP) is proposed to deal with the credit scoring problem by incorporating the advantages of the IF–THEN rules and the discriminant function. On the basis of the numerical results, we can conclude that 2SGP can provide the better accuracy than other models.
Author Huang, Jih-Jeng
Ong, Chorng-Shyong
Tzeng, Gwo-Hshiung
Author_xml – sequence: 1
  givenname: Jih-Jeng
  surname: Huang
  fullname: Huang, Jih-Jeng
  organization: Department of Information Management, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
– sequence: 2
  givenname: Gwo-Hshiung
  surname: Tzeng
  fullname: Tzeng, Gwo-Hshiung
  email: u5460637@ms16.hinet.net
  organization: Institute of Management of Technology and Institute of Traffic and Transportation College of Management, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300, Taiwan
– sequence: 3
  givenname: Chorng-Shyong
  surname: Ong
  fullname: Ong, Chorng-Shyong
  organization: Department of Information Management, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17593170$$DView record in Pascal Francis
BookMark eNp9kEFLw0AQhRepYFv9Ad5yEfSQOptNsw2eStEqFBSs52WcTOqWJlt2F8V_b0LFg4fCgznM-x68NxKD1rUsxKWEiQRZ3G4n2NAkA5hOemX6RAzlTKt0WuTlQAwByiJVAOpMjELYAoAuZD4U8_WXS0PEDScbbjlaSvbebTw2jW03yXX2uny5SWrnk_jBCXmubEwCOd9_G1fx7lyc1rgLfPF7x-Lt4X69eExXz8unxXyVksp0TImnijSV-YxyAqWZMyoQ6jpHKLBAUtD5cp2X71WVU6ZQaSq6IhIZy1qqsbg65O4xEO5qjy3ZYPbeNui_jdTTUkkNnU8ffORdCJ5rQzZitK6NHu3OSDD9YmZrusVMv5jplemOlP_Iv_AjzN2B4a76p2VvAlluqdvJM0VTOXuE_gEmWoSY
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1177_0142331217707362
crossref_primary_10_1109_TSMCC_2011_2170420
crossref_primary_10_1002_isaf_325
crossref_primary_10_3233_JIFS_231344
crossref_primary_10_1016_j_eswa_2008_02_031
crossref_primary_10_1016_j_asoc_2018_09_029
crossref_primary_10_1016_j_enconman_2010_06_053
crossref_primary_10_1155_2019_1974794
crossref_primary_10_1016_j_procs_2010_04_278
crossref_primary_10_1016_j_eswa_2009_01_076
crossref_primary_10_1007_s00521_018_3377_5
crossref_primary_10_1016_j_comnet_2015_04_004
crossref_primary_10_4028_www_scientific_net_AMR_588_589_1466
crossref_primary_10_1016_j_knosys_2016_03_023
crossref_primary_10_1016_j_ejor_2015_07_062
crossref_primary_10_1002_for_2335
crossref_primary_10_1016_j_eswa_2013_05_060
crossref_primary_10_1016_j_rcsar_2017_01_001
crossref_primary_10_1016_j_eswa_2023_121484
crossref_primary_10_1007_s10614_023_10496_y
crossref_primary_10_1016_j_ins_2010_06_012
crossref_primary_10_1155_2013_379690
crossref_primary_10_1057_jors_2015_64
crossref_primary_10_1109_TSMCC_2009_2033566
crossref_primary_10_1155_2014_191242
crossref_primary_10_1016_j_eswa_2012_01_181
crossref_primary_10_1007_s10844_014_0333_4
crossref_primary_10_1108_GS_01_2024_0011
crossref_primary_10_1007_s11633_008_0022_2
crossref_primary_10_1016_j_knosys_2010_07_006
crossref_primary_10_1016_j_eswa_2024_123839
crossref_primary_10_1155_2019_1902970
crossref_primary_10_1002_cplx_21458
crossref_primary_10_1016_j_eswa_2010_02_101
crossref_primary_10_1016_j_ejor_2012_04_009
crossref_primary_10_1108_IMEFM_03_2013_0038
crossref_primary_10_1016_j_cor_2021_105223
crossref_primary_10_1016_j_compag_2014_03_011
crossref_primary_10_1111_j_1468_0394_2010_00565_x
crossref_primary_10_1007_s00521_019_04537_7
crossref_primary_10_1016_j_eswa_2018_03_025
crossref_primary_10_1016_j_eswa_2009_12_025
crossref_primary_10_1002_asmb_2614
crossref_primary_10_1007_s00500_014_1413_7
crossref_primary_10_1057_jors_2012_145
crossref_primary_10_3390_agriculture13050935
crossref_primary_10_1007_s40515_025_00669_7
crossref_primary_10_1016_j_apm_2017_07_003
crossref_primary_10_1016_j_engappai_2016_08_012
crossref_primary_10_1016_j_eswa_2014_04_026
crossref_primary_10_1016_j_eswa_2007_11_067
crossref_primary_10_1155_2023_4141140
crossref_primary_10_1007_s00607_012_0190_3
crossref_primary_10_3390_risks9110202
crossref_primary_10_1088_1757_899X_70_1_012004
crossref_primary_10_1016_j_sorms_2016_10_001
crossref_primary_10_1007_s00500_018_3509_y
crossref_primary_10_1016_j_ejor_2015_05_050
crossref_primary_10_1057_s41283_016_0006_4
crossref_primary_10_4028_www_scientific_net_AMR_271_273_1286
crossref_primary_10_1016_j_datak_2018_05_005
crossref_primary_10_1016_j_apenergy_2011_08_018
crossref_primary_10_1186_s40854_015_0005_6
Cites_doi 10.1016/S0305-0548(99)00149-5
10.1016/0377-2217(95)00246-4
10.1108/eb013696
10.1016/S0893-6080(01)00127-7
10.1016/S0167-8655(02)00104-6
10.1016/j.ins.2003.03.028
10.2307/2286261
10.1016/S0377-2217(98)00255-0
10.1111/j.2517-6161.1980.tb01109.x
10.1023/A:1010014314078
10.1016/S0950-7051(03)00025-X
10.1016/S1568-4946(01)00024-2
10.1016/S0305-0483(03)00016-1
10.1080/07421222.1999.11518231
10.1016/S0305-0548(96)00088-3
10.1016/S0377-2217(97)00398-6
10.1016/S0020-0255(02)00371-7
10.1016/S0957-4174(99)00053-6
10.1016/j.artmed.2003.06.001
10.1016/S0957-4174(02)00044-1
10.1016/S0305-0483(01)00045-7
ContentType Journal Article
Copyright 2005
2006 INIST-CNRS
Copyright_xml – notice: 2005
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2005.05.027
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EISSN 1873-5649
EndPage 1053
ExternalDocumentID 17593170
10_1016_j_amc_2005_05_027
S009630030500531X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-ce53c7c948c4c037ee2c6a0ff4a06a6ac303274749bdd4c23a37c60271aea9f13
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000236407300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Mon Jul 21 09:16:16 EDT 2025
Sat Nov 29 02:46:09 EST 2025
Tue Nov 18 21:00:26 EST 2025
Fri Feb 23 02:29:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Artificial neural network (ANN)
Credit scoring model
Decision trees
Two-stage genetic programming (2SGP)
Rough sets
Decision tree
Discriminant function
Statistical method
Accuracy
Numerical analysis
Applied mathematics
Genetic programming
Artificial intelligence
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-ce53c7c948c4c037ee2c6a0ff4a06a6ac303274749bdd4c23a37c60271aea9f13
PageCount 15
ParticipantIDs pascalfrancis_primary_17593170
crossref_citationtrail_10_1016_j_amc_2005_05_027
crossref_primary_10_1016_j_amc_2005_05_027
elsevier_sciencedirect_doi_10_1016_j_amc_2005_05_027
PublicationCentury 2000
PublicationDate 2006-03-15
PublicationDateYYYYMMDD 2006-03-15
PublicationDate_xml – month: 03
  year: 2006
  text: 2006-03-15
  day: 15
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2006
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Nath, Rajagopalan, Ryker (bib10) 1997; 24
Freitas (bib32) 1997
Dimitras, Slowinski, Susmaga, Zopounidis (bib11) 1999; 144
Desai, Crook, Overstreet (bib3) 1996; 95
Beynon, Peel (bib12) 2001; 29
Press, Wilson (bib15) 1978; 73
Piramuthu (bib5) 1999; 112
Ahn, Cho, Kim (bib14) 2000; 18
Chung, Gray (bib23) 1999; 16
Knoke, Burke (bib19) 1980
Johnson, Gilbert, Winson, Goodacre, Smith, Rowland, Hall, Kell (bib29) 2000; 1
Koza (bib25) 1992
Stefano, Cioppa, Marcelli (bib28) 2002; 23
Ngan, Wong, Leung (bib30) 1998
Castillo, Marshall, Green, Kordon (bib8) 2003
Aldrich, Nelson (bib17) 1984
Desai, Crook, Overstreet (bib7) 1997; 8
Bojarczuk, Lopes, Freitas, Michalkiewicz (bib31) 2004; 30
De Falco, Cioppa, Tarantino (bib33) 2002; 1
West (bib2) 2000; 27
Mahlhotra, Malhotra (bib4) 2003; 31
Craven, Shavlik (bib24) 1997; 13
Jensen (bib6) 1992; 18
Liao (bib20) 1994
Lee, Chiu, Lu, Chen (bib1) 2002; 23
Bi, Anderson, McClean (bib13) 2003; 16
Zhang, Bhattacharyya (bib27) 2004; 163
Davidson, Savic, Walters (bib26) 2003; 150
Feraud, Cleror (bib9) 2002; 15
Agresti (bib16) 1990
DeMaris (bib18) 1992
McCullagh (bib21) 1980; 42
Haykin (bib22) 1994
Liao (10.1016/j.amc.2005.05.027_bib20) 1994
Lee (10.1016/j.amc.2005.05.027_bib1) 2002; 23
Koza (10.1016/j.amc.2005.05.027_bib25) 1992
De Falco (10.1016/j.amc.2005.05.027_bib33) 2002; 1
Chung (10.1016/j.amc.2005.05.027_bib23) 1999; 16
Desai (10.1016/j.amc.2005.05.027_bib7) 1997; 8
Freitas (10.1016/j.amc.2005.05.027_bib32) 1997
West (10.1016/j.amc.2005.05.027_bib2) 2000; 27
Dimitras (10.1016/j.amc.2005.05.027_bib11) 1999; 144
DeMaris (10.1016/j.amc.2005.05.027_bib18) 1992
Feraud (10.1016/j.amc.2005.05.027_bib9) 2002; 15
Desai (10.1016/j.amc.2005.05.027_bib3) 1996; 95
Beynon (10.1016/j.amc.2005.05.027_bib12) 2001; 29
Zhang (10.1016/j.amc.2005.05.027_bib27) 2004; 163
Aldrich (10.1016/j.amc.2005.05.027_bib17) 1984
Haykin (10.1016/j.amc.2005.05.027_bib22) 1994
Nath (10.1016/j.amc.2005.05.027_bib10) 1997; 24
Press (10.1016/j.amc.2005.05.027_bib15) 1978; 73
McCullagh (10.1016/j.amc.2005.05.027_bib21) 1980; 42
Craven (10.1016/j.amc.2005.05.027_bib24) 1997; 13
Bi (10.1016/j.amc.2005.05.027_bib13) 2003; 16
Johnson (10.1016/j.amc.2005.05.027_bib29) 2000; 1
Bojarczuk (10.1016/j.amc.2005.05.027_bib31) 2004; 30
Davidson (10.1016/j.amc.2005.05.027_bib26) 2003; 150
Stefano (10.1016/j.amc.2005.05.027_bib28) 2002; 23
Mahlhotra (10.1016/j.amc.2005.05.027_bib4) 2003; 31
Knoke (10.1016/j.amc.2005.05.027_bib19) 1980
Ahn (10.1016/j.amc.2005.05.027_bib14) 2000; 18
Jensen (10.1016/j.amc.2005.05.027_bib6) 1992; 18
Castillo (10.1016/j.amc.2005.05.027_bib8) 2003
Ngan (10.1016/j.amc.2005.05.027_bib30) 1998
Piramuthu (10.1016/j.amc.2005.05.027_bib5) 1999; 112
Agresti (10.1016/j.amc.2005.05.027_bib16) 1990
References_xml – volume: 16
  start-page: 243
  year: 2003
  end-page: 251
  ident: bib13
  article-title: A rough set model with ontologies for discovering maximal association rules in document collections
  publication-title: Knowledge-Based Systems
– volume: 73
  start-page: 699
  year: 1978
  end-page: 705
  ident: bib15
  article-title: Choosing between logistic regression and discriminant analysis
  publication-title: Journal of the American Statistical Association
– volume: 8
  start-page: 324
  year: 1997
  end-page: 346
  ident: bib7
  article-title: Credit scoring models in the credit union environment using neural networks and genetic algorithms
  publication-title: IMA Journal of Mathematics Applied in Business and Industry
– year: 1990
  ident: bib16
  article-title: Categorical Data Analysis
– volume: 15
  start-page: 237
  year: 2002
  end-page: 246
  ident: bib9
  article-title: A methodology to explain neural network classification
  publication-title: Neural Network
– volume: 95
  start-page: 24
  year: 1996
  end-page: 37
  ident: bib3
  article-title: A comparison of neural networks and linear scoring models in credit union environment
  publication-title: European Journal of Operations Management
– start-page: 1975
  year: 2003
  end-page: 1985
  ident: bib8
  article-title: A methodology for combining symbolic regression and design of experiments to improve empirical model building
  publication-title: Genetic and Evolutionary Computation Conference
– start-page: 304
  year: 1998
  end-page: 312
  ident: bib30
  article-title: Using grammar based genetic programming for data mining of medical knowledge
  publication-title: Proceedings of the Third Annual Conference on Genetic Programming
– volume: 16
  start-page: 11
  year: 1999
  end-page: 16
  ident: bib23
  article-title: Special section: data mining
  publication-title: Journal of Management Information Systems
– volume: 42
  start-page: 109
  year: 1980
  end-page: 142
  ident: bib21
  article-title: Regression model for ordinal data
  publication-title: Journal of the Royal Statistical Society, Series B
– start-page: 96
  year: 1997
  end-page: 101
  ident: bib32
  article-title: A genetic programming framework for two data mining tasks: classification and generalized rule induction
  publication-title: Proceedings of the Second Annual Conference on Genetic Programming
– volume: 18
  start-page: 65
  year: 2000
  end-page: 74
  ident: bib14
  article-title: The integrated methodology of rough set theory and artificial neural network for business failure prediction
  publication-title: Expert Systems with Applications
– volume: 13
  start-page: 221
  year: 1997
  end-page: 229
  ident: bib24
  article-title: Using neural networks for data mining
  publication-title: Future Generation Computer Systems
– year: 1994
  ident: bib20
  article-title: Interpreting Probability Model: Logit, Probit, and Other Generalized Linear Models
– volume: 24
  start-page: 767
  year: 1997
  end-page: 773
  ident: bib10
  article-title: Determining the saliency of input variables in neural network classifiers
  publication-title: Computers and Operations Research
– year: 1984
  ident: bib17
  article-title: Linear Probability, Logit, and Probit Models
– volume: 1
  start-page: 243
  year: 2000
  end-page: 258
  ident: bib29
  article-title: Explanatory analysis of the metabolome using genetic programming of simple, interpretable rules
  publication-title: Genetic Programming and Evolvable Machines
– volume: 150
  start-page: 95
  year: 2003
  end-page: 117
  ident: bib26
  article-title: Symbolic and numerical regression: experiments and applications
  publication-title: Information Sciences
– volume: 23
  start-page: 245
  year: 2002
  end-page: 254
  ident: bib1
  article-title: Credit scoring using the hybrid neural discriminant technique
  publication-title: Expert Systems with Applications
– volume: 144
  start-page: 263
  year: 1999
  end-page: 280
  ident: bib11
  article-title: Business failure prediction using rough sets
  publication-title: European Journal of Operational Research
– volume: 23
  start-page: 1439
  year: 2002
  end-page: 1448
  ident: bib28
  article-title: Character preclassification based on genetic programming
  publication-title: Pattern Recognition Letters
– volume: 29
  start-page: 561
  year: 2001
  end-page: 576
  ident: bib12
  article-title: Variable precision rough set theory and data discretisation an application to corporate failure prediction
  publication-title: OMEGA: The International Journal of Management Science
– volume: 1
  start-page: 257
  year: 2002
  end-page: 269
  ident: bib33
  article-title: Discovering interesting classification rules with genetic programming
  publication-title: Applied Soft Computing
– volume: 18
  start-page: 15
  year: 1992
  end-page: 26
  ident: bib6
  article-title: Using neural networks for credit scoring
  publication-title: Managerial Finance
– year: 1992
  ident: bib18
  article-title: Logit Modeling
– year: 1980
  ident: bib19
  article-title: Log-linear Models
– volume: 163
  start-page: 85
  year: 2004
  end-page: 101
  ident: bib27
  article-title: Genetic programming in classifying large-scale data: an ensemble method
  publication-title: Information Science
– year: 1994
  ident: bib22
  article-title: Neural Networks: A Comprehensive Foundation
– volume: 112
  start-page: 310
  year: 1999
  end-page: 321
  ident: bib5
  article-title: Financial credit-risk evaluation with neural and neurofuzzy systems
  publication-title: European Journal of Operational Research
– volume: 30
  start-page: 21
  year: 2004
  end-page: 48
  ident: bib31
  article-title: A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets
  publication-title: Artificial Intelligence in Medicine
– year: 1992
  ident: bib25
  article-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
– volume: 27
  start-page: 1131
  year: 2000
  end-page: 1152
  ident: bib2
  article-title: Neural network credit scoring models
  publication-title: Computers & Operations Research
– volume: 31
  start-page: 83
  year: 2003
  end-page: 96
  ident: bib4
  article-title: Evaluating consumer loans using neural networks
  publication-title: OMEGA: The International Journal of Management Science
– volume: 27
  start-page: 1131
  issue: 11–12
  year: 2000
  ident: 10.1016/j.amc.2005.05.027_bib2
  article-title: Neural network credit scoring models
  publication-title: Computers & Operations Research
  doi: 10.1016/S0305-0548(99)00149-5
– volume: 95
  start-page: 24
  issue: 1
  year: 1996
  ident: 10.1016/j.amc.2005.05.027_bib3
  article-title: A comparison of neural networks and linear scoring models in credit union environment
  publication-title: European Journal of Operations Management
  doi: 10.1016/0377-2217(95)00246-4
– year: 1992
  ident: 10.1016/j.amc.2005.05.027_bib18
– volume: 18
  start-page: 15
  issue: 1
  year: 1992
  ident: 10.1016/j.amc.2005.05.027_bib6
  article-title: Using neural networks for credit scoring
  publication-title: Managerial Finance
  doi: 10.1108/eb013696
– volume: 15
  start-page: 237
  issue: 2
  year: 2002
  ident: 10.1016/j.amc.2005.05.027_bib9
  article-title: A methodology to explain neural network classification
  publication-title: Neural Network
  doi: 10.1016/S0893-6080(01)00127-7
– year: 1994
  ident: 10.1016/j.amc.2005.05.027_bib20
– volume: 23
  start-page: 1439
  issue: 12
  year: 2002
  ident: 10.1016/j.amc.2005.05.027_bib28
  article-title: Character preclassification based on genetic programming
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(02)00104-6
– volume: 163
  start-page: 85
  issue: 1–3
  year: 2004
  ident: 10.1016/j.amc.2005.05.027_bib27
  article-title: Genetic programming in classifying large-scale data: an ensemble method
  publication-title: Information Science
  doi: 10.1016/j.ins.2003.03.028
– volume: 73
  start-page: 699
  issue: 4
  year: 1978
  ident: 10.1016/j.amc.2005.05.027_bib15
  article-title: Choosing between logistic regression and discriminant analysis
  publication-title: Journal of the American Statistical Association
  doi: 10.2307/2286261
– year: 1992
  ident: 10.1016/j.amc.2005.05.027_bib25
– volume: 144
  start-page: 263
  issue: 2
  year: 1999
  ident: 10.1016/j.amc.2005.05.027_bib11
  article-title: Business failure prediction using rough sets
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(98)00255-0
– volume: 42
  start-page: 109
  issue: 2
  year: 1980
  ident: 10.1016/j.amc.2005.05.027_bib21
  article-title: Regression model for ordinal data
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1980.tb01109.x
– start-page: 96
  year: 1997
  ident: 10.1016/j.amc.2005.05.027_bib32
  article-title: A genetic programming framework for two data mining tasks: classification and generalized rule induction
– volume: 13
  start-page: 221
  issue: 2/3
  year: 1997
  ident: 10.1016/j.amc.2005.05.027_bib24
  article-title: Using neural networks for data mining
  publication-title: Future Generation Computer Systems
– volume: 1
  start-page: 243
  issue: 3
  year: 2000
  ident: 10.1016/j.amc.2005.05.027_bib29
  article-title: Explanatory analysis of the metabolome using genetic programming of simple, interpretable rules
  publication-title: Genetic Programming and Evolvable Machines
  doi: 10.1023/A:1010014314078
– volume: 16
  start-page: 243
  issue: 5–6
  year: 2003
  ident: 10.1016/j.amc.2005.05.027_bib13
  article-title: A rough set model with ontologies for discovering maximal association rules in document collections
  publication-title: Knowledge-Based Systems
  doi: 10.1016/S0950-7051(03)00025-X
– volume: 1
  start-page: 257
  issue: 4
  year: 2002
  ident: 10.1016/j.amc.2005.05.027_bib33
  article-title: Discovering interesting classification rules with genetic programming
  publication-title: Applied Soft Computing
  doi: 10.1016/S1568-4946(01)00024-2
– volume: 31
  start-page: 83
  issue: 2
  year: 2003
  ident: 10.1016/j.amc.2005.05.027_bib4
  article-title: Evaluating consumer loans using neural networks
  publication-title: OMEGA: The International Journal of Management Science
  doi: 10.1016/S0305-0483(03)00016-1
– volume: 16
  start-page: 11
  issue: 1
  year: 1999
  ident: 10.1016/j.amc.2005.05.027_bib23
  article-title: Special section: data mining
  publication-title: Journal of Management Information Systems
  doi: 10.1080/07421222.1999.11518231
– volume: 24
  start-page: 767
  issue: 8
  year: 1997
  ident: 10.1016/j.amc.2005.05.027_bib10
  article-title: Determining the saliency of input variables in neural network classifiers
  publication-title: Computers and Operations Research
  doi: 10.1016/S0305-0548(96)00088-3
– year: 1980
  ident: 10.1016/j.amc.2005.05.027_bib19
– volume: 112
  start-page: 310
  issue: 2
  year: 1999
  ident: 10.1016/j.amc.2005.05.027_bib5
  article-title: Financial credit-risk evaluation with neural and neurofuzzy systems
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(97)00398-6
– volume: 150
  start-page: 95
  issue: 1–2
  year: 2003
  ident: 10.1016/j.amc.2005.05.027_bib26
  article-title: Symbolic and numerical regression: experiments and applications
  publication-title: Information Sciences
  doi: 10.1016/S0020-0255(02)00371-7
– year: 1984
  ident: 10.1016/j.amc.2005.05.027_bib17
– volume: 8
  start-page: 324
  issue: 4
  year: 1997
  ident: 10.1016/j.amc.2005.05.027_bib7
  article-title: Credit scoring models in the credit union environment using neural networks and genetic algorithms
  publication-title: IMA Journal of Mathematics Applied in Business and Industry
– start-page: 304
  year: 1998
  ident: 10.1016/j.amc.2005.05.027_bib30
  article-title: Using grammar based genetic programming for data mining of medical knowledge
– volume: 18
  start-page: 65
  issue: 2
  year: 2000
  ident: 10.1016/j.amc.2005.05.027_bib14
  article-title: The integrated methodology of rough set theory and artificial neural network for business failure prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(99)00053-6
– volume: 30
  start-page: 21
  issue: 1
  year: 2004
  ident: 10.1016/j.amc.2005.05.027_bib31
  article-title: A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2003.06.001
– volume: 23
  start-page: 245
  issue: 3
  year: 2002
  ident: 10.1016/j.amc.2005.05.027_bib1
  article-title: Credit scoring using the hybrid neural discriminant technique
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(02)00044-1
– volume: 29
  start-page: 561
  issue: 6
  year: 2001
  ident: 10.1016/j.amc.2005.05.027_bib12
  article-title: Variable precision rough set theory and data discretisation an application to corporate failure prediction
  publication-title: OMEGA: The International Journal of Management Science
  doi: 10.1016/S0305-0483(01)00045-7
– start-page: 1975
  year: 2003
  ident: 10.1016/j.amc.2005.05.027_bib8
  article-title: A methodology for combining symbolic regression and design of experiments to improve empirical model building
  publication-title: Genetic and Evolutionary Computation Conference
– year: 1990
  ident: 10.1016/j.amc.2005.05.027_bib16
– year: 1994
  ident: 10.1016/j.amc.2005.05.027_bib22
SSID ssj0007614
Score 2.2163749
Snippet Credit scoring models have been widely studied in the areas of statistics, machine learning, and artificial intelligence (AI). Many novel approaches such as...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1039
SubjectTerms Applied sciences
Artificial intelligence
Artificial neural network (ANN)
Computer science; control theory; systems
Credit scoring model
Decision trees
Exact sciences and technology
Learning and adaptive systems
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming
Numerical methods in mathematical programming, optimization and calculus of variations
Rough sets
Sciences and techniques of general use
Two-stage genetic programming (2SGP)
Title Two-stage genetic programming (2SGP) for the credit scoring model
URI https://dx.doi.org/10.1016/j.amc.2005.05.027
Volume 174
WOSCitedRecordID wos000236407300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMIIW4T4zL5gQcuMkrsJE4eq2msVDAmdaC-RY7jrJ3WtGraXXjkl3Mc22k6wQRISFFUxXUuPl-OP5-cC0KvMhj5PMhjorxA6RJmHklYmBHl5zSOJCy6amPOt0_88DAejZKjTueHi4U5P-NlGV9eJvP_Kmo4BsLWobN_Ie7mpHAAfoPQYQ9ih_2fCf5iRoDynShdHVmHKDofrKm1CtDhwZE2BjgHQ50zdLJ8V0nji1fXxmlzVkdUp02G18pFw81Xm1_y-ytrfh5MxmSg7KyoDQPflWk4gLvrV-PJat32xbTsjWeL8oQMx1cz29YyRjBiwjGNhcxFyWw4ceplEmGeZxSZMoo25oyEkUlX2mhiU7DHQo629Kr-YN2ao4EUsl_qf2OKOH0vptLay2AzyQeupdUe6rti9RKqVkSjW2iL8jCJu2ir93F_NGjmcx6ZDPHuKdy38dpL8NqFfsdu7s1FBe9cYYqltBjM8QN03y49cM9A5iHqqPIRuvt5LdXHqNeAB1vw4BZ48GsNnTcYgIOhEzbAwRY4uAbOE_T1w_7xXp_YIhtEMsqXRKqQSS6TIJaB9BhXispIeEURCC8SkZDAcbTlIkiyPA8kZYJxGcGj-kKJpPDZNuqWs1I9RZhTKmmU5bJQMkj8QOQi80UcZhS6R3G8gzw3OKm0Geh1IZSz1LkanqYwnroyapjqjfId9LbpMjfpV276c-BGPLX80fDCFOBxU7fdDemsLwRwAHrtPfu38z5Hd9avyAvUXS5W6iW6Lc-Xk2qxa1H2EzVQm9w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+genetic+programming+%282SGP%29+for+the+credit+scoring+model&rft.jtitle=Applied+mathematics+and+computation&rft.au=Huang%2C+Jih-Jeng&rft.au=Tzeng%2C+Gwo-Hshiung&rft.au=Ong%2C+Chorng-Shyong&rft.date=2006-03-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=174&rft.issue=2&rft.spage=1039&rft.epage=1053&rft_id=info:doi/10.1016%2Fj.amc.2005.05.027&rft.externalDocID=S009630030500531X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon