A globally and superlinearly convergent feasible QP-free method for nonlinear programming

In this paper, we propose a QP-free type algorithm which solves the problem of minimizing a smooth function subject to smooth inequality constraints. In contrast with the SQP methods, each iteration this algorithm only needs to solve systems of linear equations which are derived from the equality pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 168; H. 1; S. 519 - 539
1. Verfasser: Zhu, Zhibin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Elsevier Inc 01.09.2005
Elsevier
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a QP-free type algorithm which solves the problem of minimizing a smooth function subject to smooth inequality constraints. In contrast with the SQP methods, each iteration this algorithm only needs to solve systems of linear equations which are derived from the equality part in the KKT first order optimality conditions. It is observed that, if the quasi-Newton direction is zero, we can obtain a direction of descent by dropping a constraint from the active set at the current iterate. A high order modified direction is introduced in order to prevent Maratos effect. Global and superlinear convergence are proven under some suitable conditions.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2004.09.034