Shape influence on the ultrafast plasmonic properties of gold nanoparticles
The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution...
Uložené v:
| Vydané v: | Optics express Ročník 30; číslo 15; s. 27730 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Optical Society of America - OSA Publishing
18.07.2022
|
| Predmet: | |
| ISSN: | 1094-4087, 1094-4087 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution within minutes, including the synthesized nanorods, decahedra, and nanospheres. Colloidal solutions containing Au NPs were measured in TAS and their localized surface plasmon resonance (LSPR) modes were classified according to the shape, wavelength and number of peaks. Then their excited-state relaxation dynamics were used to ascertain their electron-phonon (
e-ph
) coupling time constant and frequency of optomechanical modes. TAS can quickly show that an Au nanosphere sample contains a tiny fraction of Au nanorods, whereas steady-state absorbance is totally blind to the presence of nanorods. Additionally, the TAS experiments indicate that the characteristic
e-ph
coupling time constants in Au nanorods depend on the NPs dimensions at high excitation intensity (> 6 µJ/cm
2
) which can help identify if there are any elongated Au NPs in Au spheres samples. Finally, optomechanical oscillations formed by NPs breathing modes were observed, providing information related to the average size and monodispersity of Au nanospheres and nanorods. |
|---|---|
| AbstractList | The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution within minutes, including the synthesized nanorods, decahedra, and nanospheres. Colloidal solutions containing Au NPs were measured in TAS and their localized surface plasmon resonance (LSPR) modes were classified according to the shape, wavelength and number of peaks. Then their excited-state relaxation dynamics were used to ascertain their electron-phonon (e-ph) coupling time constant and frequency of optomechanical modes. TAS can quickly show that an Au nanosphere sample contains a tiny fraction of Au nanorods, whereas steady-state absorbance is totally blind to the presence of nanorods. Additionally, the TAS experiments indicate that the characteristic e-ph coupling time constants in Au nanorods depend on the NPs dimensions at high excitation intensity (> 6 µJ/cm2) which can help identify if there are any elongated Au NPs in Au spheres samples. Finally, optomechanical oscillations formed by NPs breathing modes were observed, providing information related to the average size and monodispersity of Au nanospheres and nanorods.The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution within minutes, including the synthesized nanorods, decahedra, and nanospheres. Colloidal solutions containing Au NPs were measured in TAS and their localized surface plasmon resonance (LSPR) modes were classified according to the shape, wavelength and number of peaks. Then their excited-state relaxation dynamics were used to ascertain their electron-phonon (e-ph) coupling time constant and frequency of optomechanical modes. TAS can quickly show that an Au nanosphere sample contains a tiny fraction of Au nanorods, whereas steady-state absorbance is totally blind to the presence of nanorods. Additionally, the TAS experiments indicate that the characteristic e-ph coupling time constants in Au nanorods depend on the NPs dimensions at high excitation intensity (> 6 µJ/cm2) which can help identify if there are any elongated Au NPs in Au spheres samples. Finally, optomechanical oscillations formed by NPs breathing modes were observed, providing information related to the average size and monodispersity of Au nanospheres and nanorods. The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution within minutes, including the synthesized nanorods, decahedra, and nanospheres. Colloidal solutions containing Au NPs were measured in TAS and their localized surface plasmon resonance (LSPR) modes were classified according to the shape, wavelength and number of peaks. Then their excited-state relaxation dynamics were used to ascertain their electron-phonon ( e-ph ) coupling time constant and frequency of optomechanical modes. TAS can quickly show that an Au nanosphere sample contains a tiny fraction of Au nanorods, whereas steady-state absorbance is totally blind to the presence of nanorods. Additionally, the TAS experiments indicate that the characteristic e-ph coupling time constants in Au nanorods depend on the NPs dimensions at high excitation intensity (> 6 µJ/cm 2 ) which can help identify if there are any elongated Au NPs in Au spheres samples. Finally, optomechanical oscillations formed by NPs breathing modes were observed, providing information related to the average size and monodispersity of Au nanospheres and nanorods. The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution within minutes, including the synthesized nanorods, decahedra, and nanospheres. Colloidal solutions containing Au NPs were measured in TAS and their localized surface plasmon resonance (LSPR) modes were classified according to the shape, wavelength and number of peaks. Then their excited-state relaxation dynamics were used to ascertain their electron-phonon ( e-ph ) coupling time constant and frequency of optomechanical modes. TAS can quickly show that an Au nanosphere sample contains a tiny fraction of Au nanorods, whereas steady-state absorbance is totally blind to the presence of nanorods. Additionally, the TAS experiments indicate that the characteristic e-ph coupling time constants in Au nanorods depend on the NPs dimensions at high excitation intensity (> 6 µJ/cm 2 ) which can help identify if there are any elongated Au NPs in Au spheres samples. Finally, optomechanical oscillations formed by NPs breathing modes were observed, providing information related to the average size and monodispersity of Au nanospheres and nanorods. |
| Author | Bauerlin, Quentin Peckus, Domantas Mougin, Karine Vidal, Loic Puodžiukynas, Linas Tamulevičienė, Asta Keller, Marc Tamulevičius, Tomas Spangenberg, Arnaud Henzie, Joel Tamulevičius, Sigitas |
| Author_xml | – sequence: 1 givenname: Domantas orcidid: 0000-0002-4224-2521 surname: Peckus fullname: Peckus, Domantas – sequence: 2 givenname: Asta surname: Tamulevičienė fullname: Tamulevičienė, Asta – sequence: 3 givenname: Karine surname: Mougin fullname: Mougin, Karine – sequence: 4 givenname: Arnaud surname: Spangenberg fullname: Spangenberg, Arnaud – sequence: 5 givenname: Loic surname: Vidal fullname: Vidal, Loic – sequence: 6 givenname: Quentin surname: Bauerlin fullname: Bauerlin, Quentin – sequence: 7 givenname: Marc surname: Keller fullname: Keller, Marc – sequence: 8 givenname: Joel surname: Henzie fullname: Henzie, Joel – sequence: 9 givenname: Linas surname: Puodžiukynas fullname: Puodžiukynas, Linas – sequence: 10 givenname: Tomas orcidid: 0000-0003-3879-2253 surname: Tamulevičius fullname: Tamulevičius, Tomas – sequence: 11 givenname: Sigitas orcidid: 0000-0002-9965-2724 surname: Tamulevičius fullname: Tamulevičius, Sigitas |
| BackLink | https://cnrs.hal.science/hal-04274290$$DView record in HAL |
| BookMark | eNptkM1KAzEUhYNUsFUXvkGWumibv8kky1KqFQtdqOuQySQ2kibjZEbw7Z1SURE3914O3z0czgSMYooWgCuMZphyNt-uZoxTyfEJGGMk2ZQhUY5-3WdgkvMrQpiVshyDh8edbiz00YXeRmNhirDbWdiHrtVO5w42Qed9it7Apk2NbTtvM0wOvqRQw6hjavSgmWDzBTh1OmR7-bXPwfPt6mm5nm62d_fLxWZqKCm7YRpjHeNMcm10bYRjtKBUuoJrzmqBjKgqgWlBbMUFIYIgpA2pay55jaqanoObo-9OB9W0fq_bD5W0V-vFRh00xEjJiETveGCvj-wQ_q23uVN7n40NQUeb-qxISQospRDkx9a0KefWum9vjNShXLVdqWO5Azv_wxrf6c6nONTmwz8fn5-LfV4 |
| CitedBy_id | crossref_primary_10_1016_j_jmat_2023_08_009 crossref_primary_10_1016_j_optmat_2025_116796 crossref_primary_10_1002_ppsc_202400231 crossref_primary_10_3390_nano14151263 crossref_primary_10_3103_S1068335624600530 crossref_primary_10_1016_j_apsusc_2023_156629 crossref_primary_10_1002_mco2_573 crossref_primary_10_1002_smll_202401131 crossref_primary_10_1021_acsami_5c03059 |
| Cites_doi | 10.1038/nmat2629 10.1021/jp013887+ 10.1016/j.optmat.2019.109239 10.1021/nl802480q 10.1016/S0301-0104(99)00298-0 10.1016/j.arabjc.2016.04.004 10.1016/j.snb.2014.01.056 10.1038/nnano.2009.192 10.1021/acs.jpcc.0c10680 10.1021/acsomega.9b01157 10.1515/nanoph-2021-0278 10.1021/acs.analchem.0c04518 10.1021/jz101716h 10.1016/j.apsusc.2020.147040 10.1021/jacs.6b12143 10.1002/adom.201901166 10.1021/jz3000992 10.1021/la201938u 10.1021/acsnano.5b06904 10.1039/b711486a 10.1002/jbio.201600062 10.3762/bjoc.15.236 10.1146/annurev.matsci.30.1.545 10.1016/j.orgel.2017.01.010 10.1021/cr1002547 10.1088/0034-4885/76/4/046401 10.1021/jp8082425 10.1038/nnano.2011.161 10.1016/j.phpro.2013.03.112 10.1038/s41598-019-50032-3 10.1080/01442350050034180 10.1021/acs.nanolett.8b02024 10.1021/acs.jpcc.7b06667 10.1021/acsphotonics.1c00078 10.1021/acsphotonics.0c01187 10.2217/17435889.2.5.681 10.1364/OE.27.018146 10.1021/jp0738917 10.1016/j.optmat.2021.111206 10.1103/PhysRevB.61.6086 10.1002/ijch.201500032 10.1364/OE.24.012458 10.3389/fphar.2018.00429 10.1117/1.JNP.11.016011 10.1016/j.physe.2019.113795 10.1021/acs.nanolett.9b00503 10.1038/s41598-018-28909-6 10.1007/s11468-016-0227-0 10.1016/j.ajme.2011.01.001 |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7X8 1XC |
| DOI | 10.1364/OE.463961 |
| DatabaseName | CrossRef MEDLINE - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1094-4087 |
| ExternalDocumentID | oai:HAL:hal-04274290v1 10_1364_OE_463961 |
| GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ABGOQ ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB 7X8 1XC C1A EJD |
| ID | FETCH-LOGICAL-c327t-c3ccef46496acadc8f435339f56a64d80c8bb81352eb68228200ac2dd696d0bd3 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000828676200144&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1094-4087 |
| IngestDate | Tue Oct 14 20:37:23 EDT 2025 Sun Nov 09 12:32:59 EST 2025 Sat Nov 29 02:58:02 EST 2025 Tue Nov 18 22:23:02 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c327t-c3ccef46496acadc8f435339f56a64d80c8bb81352eb68228200ac2dd696d0bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9965-2724 0000-0003-3879-2253 0000-0002-4224-2521 0000-0002-5530-9748 |
| OpenAccessLink | https://doi.org/10.1364/oe.463961 |
| PQID | 2725199882 |
| PQPubID | 23479 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04274290v1 proquest_miscellaneous_2725199882 crossref_primary_10_1364_OE_463961 crossref_citationtrail_10_1364_OE_463961 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-18 |
| PublicationDateYYYYMMDD | 2022-07-18 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationTitle | Optics express |
| PublicationYear | 2022 |
| Publisher | Optical Society of America - OSA Publishing |
| Publisher_xml | – name: Optical Society of America - OSA Publishing |
| References | Amendola (oe-30-15-27730-R15) 2009; 113 Pashkov (oe-30-15-27730-R19) 2021; 125 Wu (oe-30-15-27730-R18) 2018; 18 Bastús (oe-30-15-27730-R38) 2011; 27 Zhang (oe-30-15-27730-R2) 2013; 76 Li (oe-30-15-27730-R39) 2017; 43 De Jonge (oe-30-15-27730-R17) 2011; 6 Ali (oe-30-15-27730-R16) 2017; 11 Juodėnas (oe-30-15-27730-R32) 2020; 7 Staechelin (oe-30-15-27730-R27) 2021; 8 Bigot (oe-30-15-27730-R28) 2000; 251 Hartland (oe-30-15-27730-R6) 2011; 111 Sánchez-Iglesias (oe-30-15-27730-R47) 2017; 139 Kedawat (oe-30-15-27730-R33) 2019; 4 Su (oe-30-15-27730-R42) 2019; 19 Iagatti (oe-30-15-27730-R45) 2019; 15 Hartland (oe-30-15-27730-R35) 2002; 106 Link (oe-30-15-27730-R25) 2000; 19 Carbó-Argibay (oe-30-15-27730-R48) 2016; 56 Cao (oe-30-15-27730-R40) 2014; 195 Peckus (oe-30-15-27730-R46) 2020; 529 Soavi (oe-30-15-27730-R31) 2016; 10 Chen (oe-30-15-27730-R51) 2019; 27 Peckus (oe-30-15-27730-R50) 2020; 117 Zijlstra (oe-30-15-27730-R52) 2008; 8 Atwater (oe-30-15-27730-R1) 2010; 9 Zhang (oe-30-15-27730-R43) 2018; 8 Priyadarshini (oe-30-15-27730-R44) 2021; 117 Hu (oe-30-15-27730-R11) 2017; 10 Huang (oe-30-15-27730-R24) 2007; 111 Peckus (oe-30-15-27730-R22) 2017; 121 Myroshnychenko (oe-30-15-27730-R41) 2008; 37 Cardinal (oe-30-15-27730-R30) 2012; 3 Gao (oe-30-15-27730-R5) 2021; 93 Huang (oe-30-15-27730-R10) 2011; 47 Dzimitrowicz (oe-30-15-27730-R12) 2019; 12 Peckus (oe-30-15-27730-R49) 2017; 12 Bykov (oe-30-15-27730-R23) 2021; 10 Huang (oe-30-15-27730-R9) 2007; 2 Verma (oe-30-15-27730-R4) 2018; 4 Kuppe (oe-30-15-27730-R3) 2020; 8 Murray (oe-30-15-27730-R13) 2000; 30 Krishnakanth (oe-30-15-27730-R34) 2019; 95 Mioc (oe-30-15-27730-R14) 2018; 9 Pelton (oe-30-15-27730-R29) 2009; 4 Newhouse (oe-30-15-27730-R37) 2011; 2 Wu (oe-30-15-27730-R36) 2016; 24 Maciulevičius (oe-30-15-27730-R20) 2013; 41 Bin Jeon (oe-30-15-27730-R8) 2019; 9 Link (oe-30-15-27730-R26) 2000; 61 |
| References_xml | – volume: 9 start-page: 205 year: 2010 ident: oe-30-15-27730-R1 publication-title: Nat. Mater. doi: 10.1038/nmat2629 – volume: 106 start-page: 743 year: 2002 ident: oe-30-15-27730-R35 publication-title: J. Phys. Chem. B doi: 10.1021/jp013887+ – volume: 95 start-page: 109239 year: 2019 ident: oe-30-15-27730-R34 publication-title: Optical Materials doi: 10.1016/j.optmat.2019.109239 – volume: 8 start-page: 3493 year: 2008 ident: oe-30-15-27730-R52 publication-title: Nano Lett. doi: 10.1021/nl802480q – volume: 251 start-page: 181 year: 2000 ident: oe-30-15-27730-R28 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(99)00298-0 – volume: 12 start-page: 4118 year: 2019 ident: oe-30-15-27730-R12 publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2016.04.004 – volume: 195 start-page: 332 year: 2014 ident: oe-30-15-27730-R40 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2014.01.056 – volume: 4 start-page: 492 year: 2009 ident: oe-30-15-27730-R29 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.192 – volume: 125 start-page: 8656 year: 2021 ident: oe-30-15-27730-R19 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c10680 – volume: 4 start-page: 12626 year: 2019 ident: oe-30-15-27730-R33 publication-title: ACS Omega doi: 10.1021/acsomega.9b01157 – volume: 10 start-page: 2929 year: 2021 ident: oe-30-15-27730-R23 publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0278 – volume: 93 start-page: 2480 year: 2021 ident: oe-30-15-27730-R5 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c04518 – volume: 2 start-page: 228 year: 2011 ident: oe-30-15-27730-R37 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz101716h – volume: 529 start-page: 147040 year: 2020 ident: oe-30-15-27730-R46 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147040 – volume: 139 start-page: 107 year: 2017 ident: oe-30-15-27730-R47 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12143 – volume: 8 start-page: 1901166 year: 2020 ident: oe-30-15-27730-R3 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201901166 – volume: 3 start-page: 613 year: 2012 ident: oe-30-15-27730-R30 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3000992 – volume: 27 start-page: 11098 year: 2011 ident: oe-30-15-27730-R38 publication-title: Langmuir doi: 10.1021/la201938u – volume: 10 start-page: 2251 year: 2016 ident: oe-30-15-27730-R31 publication-title: ACS Nano doi: 10.1021/acsnano.5b06904 – volume: 37 start-page: 1792 year: 2008 ident: oe-30-15-27730-R41 publication-title: Chem. Soc. Rev. doi: 10.1039/b711486a – volume: 10 start-page: 674 year: 2017 ident: oe-30-15-27730-R11 publication-title: J. Biophotonics doi: 10.1002/jbio.201600062 – volume: 15 start-page: 2438 year: 2019 ident: oe-30-15-27730-R45 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.15.236 – volume: 4 start-page: 4 year: 2018 ident: oe-30-15-27730-R4 publication-title: Glob. J. Nanomed. – volume: 30 start-page: 545 year: 2000 ident: oe-30-15-27730-R13 publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev.matsci.30.1.545 – volume: 43 start-page: 33 year: 2017 ident: oe-30-15-27730-R39 publication-title: Org. Electron. doi: 10.1016/j.orgel.2017.01.010 – volume: 111 start-page: 3858 year: 2011 ident: oe-30-15-27730-R6 publication-title: Chem. Rev. doi: 10.1021/cr1002547 – volume: 76 start-page: 046401 year: 2013 ident: oe-30-15-27730-R2 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/76/4/046401 – volume: 113 start-page: 4277 year: 2009 ident: oe-30-15-27730-R15 publication-title: J. Phys. Chem. C doi: 10.1021/jp8082425 – volume: 6 start-page: 695 year: 2011 ident: oe-30-15-27730-R17 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.161 – volume: 41 start-page: 531 year: 2013 ident: oe-30-15-27730-R20 publication-title: Phys. Procedia doi: 10.1016/j.phpro.2013.03.112 – volume: 9 start-page: 13635 year: 2019 ident: oe-30-15-27730-R8 publication-title: Sci. Rep. doi: 10.1038/s41598-019-50032-3 – volume: 19 start-page: 409 year: 2000 ident: oe-30-15-27730-R25 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/01442350050034180 – volume: 18 start-page: 4053 year: 2018 ident: oe-30-15-27730-R18 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02024 – volume: 121 start-page: 24159 year: 2017 ident: oe-30-15-27730-R22 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b06667 – volume: 8 start-page: 752 year: 2021 ident: oe-30-15-27730-R27 publication-title: ACS Photonics doi: 10.1021/acsphotonics.1c00078 – volume: 7 start-page: 3130 year: 2020 ident: oe-30-15-27730-R32 publication-title: ACS Photonics doi: 10.1021/acsphotonics.0c01187 – volume: 2 start-page: 681 year: 2007 ident: oe-30-15-27730-R9 publication-title: Nanomedicine doi: 10.2217/17435889.2.5.681 – volume: 27 start-page: 18146 year: 2019 ident: oe-30-15-27730-R51 publication-title: Opt. Express doi: 10.1364/OE.27.018146 – volume: 111 start-page: 10751 year: 2007 ident: oe-30-15-27730-R24 publication-title: J. Phys. Chem. C doi: 10.1021/jp0738917 – volume: 117 start-page: 111206 year: 2021 ident: oe-30-15-27730-R44 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2021.111206 – volume: 61 start-page: 6086 year: 2000 ident: oe-30-15-27730-R26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.6086 – volume: 56 start-page: 214 year: 2016 ident: oe-30-15-27730-R48 publication-title: Isr. J. Chem. doi: 10.1002/ijch.201500032 – volume: 24 start-page: 12458 year: 2016 ident: oe-30-15-27730-R36 publication-title: Opt. Express doi: 10.1364/OE.24.012458 – volume: 9 start-page: 1 year: 2018 ident: oe-30-15-27730-R14 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00429 – volume: 11 start-page: 016011 year: 2017 ident: oe-30-15-27730-R16 publication-title: J. Nanophotonics doi: 10.1117/1.JNP.11.016011 – volume: 117 start-page: 113795 year: 2020 ident: oe-30-15-27730-R50 publication-title: Phys. E (Amsterdam, Neth.) doi: 10.1016/j.physe.2019.113795 – volume: 19 start-page: 3091 year: 2019 ident: oe-30-15-27730-R42 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00503 – volume: 8 start-page: 10499 year: 2018 ident: oe-30-15-27730-R43 publication-title: Sci. Rep. doi: 10.1038/s41598-018-28909-6 – volume: 12 start-page: 47 year: 2017 ident: oe-30-15-27730-R49 publication-title: Plasmonics doi: 10.1007/s11468-016-0227-0 – volume: 47 start-page: 1 year: 2011 ident: oe-30-15-27730-R10 publication-title: Alexandria J. Med. doi: 10.1016/j.ajme.2011.01.001 |
| SSID | ssj0014797 |
| Score | 2.4631805 |
| Snippet | The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show... |
| SourceID | hal proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 27730 |
| SubjectTerms | Physics |
| Title | Shape influence on the ultrafast plasmonic properties of gold nanoparticles |
| URI | https://www.proquest.com/docview/2725199882 https://cnrs.hal.science/hal-04274290 |
| Volume | 30 |
| WOSCitedRecordID | wos000828676200144&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfaAdIuiE-xAZVBHJCmQJekiX2soGjS2Iq0IvUWObbDEG0S5aPqiRN_OO85rtduO4wDFyuynS-_p-ef_Z5_j5B3gqdcBHrk-ZlIvVBlzGMy5Z7WyL4_0jDHC5NsIj4_Z_M5_9br_dmchVkt4jxn6zUv_6uooQ6EjUdn_0Hc7qFQAdcgdChB7FDeSfAXl6JEJhCbfMR6A47aRVOJTNQNJo6ulybxTYk78RVSqiJm_FEs1FEuclhG22i5beQ6LQ2hs16XLmjDWFT5q7VIfAlCEq5lJpYtHl03aPUzGBC8QD5esEV14yaDMwDwHY3Bqai2fPwXJZ56cNFnY_jvVm1vUfgmnHXHqsIaEhaqdmbVt9RZU2xdNFblRtuGNY67xhsmP4hCEMl08iEEsNURu-_Sal-b7lwQovHlRWEynSTdrX1yz49HHAMDz35PnC8qjLsUPZsPtvxUcOtH99YdVNO_xJjaa1O7wSuzR-ShXWjQcSfKx6Sn8yfkgQn4lfVTcmrUhDo1oUVOQU2oUxPq1IReqQktMopqQnfU5Bn5_mUy-3Ti2cQangz8uIFSSp2FUcgjIYWSLAPQHAQ8G0UiChUbSpam7BiwuU4jQJCAEodC-kpFPFLDVAXPyV5e5PoFoTFTx0JiwmepQmQCkjIUAaaqZFxp5R-Q95uBSaRlncfkJ4vkxvAfkLeua9lRrdzaCUbXtSM5-sn4a4J1mDUG0NVwBZ3ebAY_AWuJLjCR66KtEz_Gk9oclpWHd3nbS7J_pc-vyF5Ttfo1uS9Xzc-6GpB-PGcDs4szMCrzF9GsjNI |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+influence+on+the+ultrafast+plasmonic+properties+of+gold+nanoparticles&rft.jtitle=Optics+express&rft.au=Peckus%2C+Domantas&rft.au=Tamulevi%C4%8Dien%C4%97%2C+Asta&rft.au=Mougin%2C+Karine&rft.au=Spangenberg%2C+Arnaud&rft.date=2022-07-18&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=30&rft.issue=15&rft.spage=27730&rft_id=info:doi/10.1364%2FOE.463961&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_463961 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |