Shape influence on the ultrafast plasmonic properties of gold nanoparticles

The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optics express Ročník 30; číslo 15; s. 27730
Hlavní autori: Peckus, Domantas, Tamulevičienė, Asta, Mougin, Karine, Spangenberg, Arnaud, Vidal, Loic, Bauerlin, Quentin, Keller, Marc, Henzie, Joel, Puodžiukynas, Linas, Tamulevičius, Tomas, Tamulevičius, Sigitas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Optical Society of America - OSA Publishing 18.07.2022
Predmet:
ISSN:1094-4087, 1094-4087
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution within minutes, including the synthesized nanorods, decahedra, and nanospheres. Colloidal solutions containing Au NPs were measured in TAS and their localized surface plasmon resonance (LSPR) modes were classified according to the shape, wavelength and number of peaks. Then their excited-state relaxation dynamics were used to ascertain their electron-phonon ( e-ph ) coupling time constant and frequency of optomechanical modes. TAS can quickly show that an Au nanosphere sample contains a tiny fraction of Au nanorods, whereas steady-state absorbance is totally blind to the presence of nanorods. Additionally, the TAS experiments indicate that the characteristic e-ph coupling time constants in Au nanorods depend on the NPs dimensions at high excitation intensity (> 6 µJ/cm 2 ) which can help identify if there are any elongated Au NPs in Au spheres samples. Finally, optomechanical oscillations formed by NPs breathing modes were observed, providing information related to the average size and monodispersity of Au nanospheres and nanorods.
AbstractList The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution within minutes, including the synthesized nanorods, decahedra, and nanospheres. Colloidal solutions containing Au NPs were measured in TAS and their localized surface plasmon resonance (LSPR) modes were classified according to the shape, wavelength and number of peaks. Then their excited-state relaxation dynamics were used to ascertain their electron-phonon (e-ph) coupling time constant and frequency of optomechanical modes. TAS can quickly show that an Au nanosphere sample contains a tiny fraction of Au nanorods, whereas steady-state absorbance is totally blind to the presence of nanorods. Additionally, the TAS experiments indicate that the characteristic e-ph coupling time constants in Au nanorods depend on the NPs dimensions at high excitation intensity (> 6 µJ/cm2) which can help identify if there are any elongated Au NPs in Au spheres samples. Finally, optomechanical oscillations formed by NPs breathing modes were observed, providing information related to the average size and monodispersity of Au nanospheres and nanorods.The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution within minutes, including the synthesized nanorods, decahedra, and nanospheres. Colloidal solutions containing Au NPs were measured in TAS and their localized surface plasmon resonance (LSPR) modes were classified according to the shape, wavelength and number of peaks. Then their excited-state relaxation dynamics were used to ascertain their electron-phonon (e-ph) coupling time constant and frequency of optomechanical modes. TAS can quickly show that an Au nanosphere sample contains a tiny fraction of Au nanorods, whereas steady-state absorbance is totally blind to the presence of nanorods. Additionally, the TAS experiments indicate that the characteristic e-ph coupling time constants in Au nanorods depend on the NPs dimensions at high excitation intensity (> 6 µJ/cm2) which can help identify if there are any elongated Au NPs in Au spheres samples. Finally, optomechanical oscillations formed by NPs breathing modes were observed, providing information related to the average size and monodispersity of Au nanospheres and nanorods.
The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution within minutes, including the synthesized nanorods, decahedra, and nanospheres. Colloidal solutions containing Au NPs were measured in TAS and their localized surface plasmon resonance (LSPR) modes were classified according to the shape, wavelength and number of peaks. Then their excited-state relaxation dynamics were used to ascertain their electron-phonon ( e-ph ) coupling time constant and frequency of optomechanical modes. TAS can quickly show that an Au nanosphere sample contains a tiny fraction of Au nanorods, whereas steady-state absorbance is totally blind to the presence of nanorods. Additionally, the TAS experiments indicate that the characteristic e-ph coupling time constants in Au nanorods depend on the NPs dimensions at high excitation intensity (> 6 µJ/cm 2 ) which can help identify if there are any elongated Au NPs in Au spheres samples. Finally, optomechanical oscillations formed by NPs breathing modes were observed, providing information related to the average size and monodispersity of Au nanospheres and nanorods.
The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution within minutes, including the synthesized nanorods, decahedra, and nanospheres. Colloidal solutions containing Au NPs were measured in TAS and their localized surface plasmon resonance (LSPR) modes were classified according to the shape, wavelength and number of peaks. Then their excited-state relaxation dynamics were used to ascertain their electron-phonon ( e-ph ) coupling time constant and frequency of optomechanical modes. TAS can quickly show that an Au nanosphere sample contains a tiny fraction of Au nanorods, whereas steady-state absorbance is totally blind to the presence of nanorods. Additionally, the TAS experiments indicate that the characteristic e-ph coupling time constants in Au nanorods depend on the NPs dimensions at high excitation intensity (> 6 µJ/cm 2 ) which can help identify if there are any elongated Au NPs in Au spheres samples. Finally, optomechanical oscillations formed by NPs breathing modes were observed, providing information related to the average size and monodispersity of Au nanospheres and nanorods.
Author Bauerlin, Quentin
Peckus, Domantas
Mougin, Karine
Vidal, Loic
Puodžiukynas, Linas
Tamulevičienė, Asta
Keller, Marc
Tamulevičius, Tomas
Spangenberg, Arnaud
Henzie, Joel
Tamulevičius, Sigitas
Author_xml – sequence: 1
  givenname: Domantas
  orcidid: 0000-0002-4224-2521
  surname: Peckus
  fullname: Peckus, Domantas
– sequence: 2
  givenname: Asta
  surname: Tamulevičienė
  fullname: Tamulevičienė, Asta
– sequence: 3
  givenname: Karine
  surname: Mougin
  fullname: Mougin, Karine
– sequence: 4
  givenname: Arnaud
  surname: Spangenberg
  fullname: Spangenberg, Arnaud
– sequence: 5
  givenname: Loic
  surname: Vidal
  fullname: Vidal, Loic
– sequence: 6
  givenname: Quentin
  surname: Bauerlin
  fullname: Bauerlin, Quentin
– sequence: 7
  givenname: Marc
  surname: Keller
  fullname: Keller, Marc
– sequence: 8
  givenname: Joel
  surname: Henzie
  fullname: Henzie, Joel
– sequence: 9
  givenname: Linas
  surname: Puodžiukynas
  fullname: Puodžiukynas, Linas
– sequence: 10
  givenname: Tomas
  orcidid: 0000-0003-3879-2253
  surname: Tamulevičius
  fullname: Tamulevičius, Tomas
– sequence: 11
  givenname: Sigitas
  orcidid: 0000-0002-9965-2724
  surname: Tamulevičius
  fullname: Tamulevičius, Sigitas
BackLink https://cnrs.hal.science/hal-04274290$$DView record in HAL
BookMark eNptkM1KAzEUhYNUsFUXvkGWumibv8kky1KqFQtdqOuQySQ2kibjZEbw7Z1SURE3914O3z0czgSMYooWgCuMZphyNt-uZoxTyfEJGGMk2ZQhUY5-3WdgkvMrQpiVshyDh8edbiz00YXeRmNhirDbWdiHrtVO5w42Qed9it7Apk2NbTtvM0wOvqRQw6hjavSgmWDzBTh1OmR7-bXPwfPt6mm5nm62d_fLxWZqKCm7YRpjHeNMcm10bYRjtKBUuoJrzmqBjKgqgWlBbMUFIYIgpA2pay55jaqanoObo-9OB9W0fq_bD5W0V-vFRh00xEjJiETveGCvj-wQ_q23uVN7n40NQUeb-qxISQospRDkx9a0KefWum9vjNShXLVdqWO5Azv_wxrf6c6nONTmwz8fn5-LfV4
CitedBy_id crossref_primary_10_1016_j_jmat_2023_08_009
crossref_primary_10_1016_j_optmat_2025_116796
crossref_primary_10_1002_ppsc_202400231
crossref_primary_10_3390_nano14151263
crossref_primary_10_3103_S1068335624600530
crossref_primary_10_1016_j_apsusc_2023_156629
crossref_primary_10_1002_mco2_573
crossref_primary_10_1002_smll_202401131
crossref_primary_10_1021_acsami_5c03059
Cites_doi 10.1038/nmat2629
10.1021/jp013887+
10.1016/j.optmat.2019.109239
10.1021/nl802480q
10.1016/S0301-0104(99)00298-0
10.1016/j.arabjc.2016.04.004
10.1016/j.snb.2014.01.056
10.1038/nnano.2009.192
10.1021/acs.jpcc.0c10680
10.1021/acsomega.9b01157
10.1515/nanoph-2021-0278
10.1021/acs.analchem.0c04518
10.1021/jz101716h
10.1016/j.apsusc.2020.147040
10.1021/jacs.6b12143
10.1002/adom.201901166
10.1021/jz3000992
10.1021/la201938u
10.1021/acsnano.5b06904
10.1039/b711486a
10.1002/jbio.201600062
10.3762/bjoc.15.236
10.1146/annurev.matsci.30.1.545
10.1016/j.orgel.2017.01.010
10.1021/cr1002547
10.1088/0034-4885/76/4/046401
10.1021/jp8082425
10.1038/nnano.2011.161
10.1016/j.phpro.2013.03.112
10.1038/s41598-019-50032-3
10.1080/01442350050034180
10.1021/acs.nanolett.8b02024
10.1021/acs.jpcc.7b06667
10.1021/acsphotonics.1c00078
10.1021/acsphotonics.0c01187
10.2217/17435889.2.5.681
10.1364/OE.27.018146
10.1021/jp0738917
10.1016/j.optmat.2021.111206
10.1103/PhysRevB.61.6086
10.1002/ijch.201500032
10.1364/OE.24.012458
10.3389/fphar.2018.00429
10.1117/1.JNP.11.016011
10.1016/j.physe.2019.113795
10.1021/acs.nanolett.9b00503
10.1038/s41598-018-28909-6
10.1007/s11468-016-0227-0
10.1016/j.ajme.2011.01.001
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7X8
1XC
DOI 10.1364/OE.463961
DatabaseName CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID oai:HAL:hal-04274290v1
10_1364_OE_463961
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ABGOQ
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
7X8
1XC
C1A
EJD
ID FETCH-LOGICAL-c327t-c3ccef46496acadc8f435339f56a64d80c8bb81352eb68228200ac2dd696d0bd3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000828676200144&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1094-4087
IngestDate Tue Oct 14 20:37:23 EDT 2025
Sun Nov 09 12:32:59 EST 2025
Sat Nov 29 02:58:02 EST 2025
Tue Nov 18 22:23:02 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-c3ccef46496acadc8f435339f56a64d80c8bb81352eb68228200ac2dd696d0bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9965-2724
0000-0003-3879-2253
0000-0002-4224-2521
0000-0002-5530-9748
OpenAccessLink https://doi.org/10.1364/oe.463961
PQID 2725199882
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_04274290v1
proquest_miscellaneous_2725199882
crossref_primary_10_1364_OE_463961
crossref_citationtrail_10_1364_OE_463961
PublicationCentury 2000
PublicationDate 2022-07-18
PublicationDateYYYYMMDD 2022-07-18
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-18
  day: 18
PublicationDecade 2020
PublicationTitle Optics express
PublicationYear 2022
Publisher Optical Society of America - OSA Publishing
Publisher_xml – name: Optical Society of America - OSA Publishing
References Amendola (oe-30-15-27730-R15) 2009; 113
Pashkov (oe-30-15-27730-R19) 2021; 125
Wu (oe-30-15-27730-R18) 2018; 18
Bastús (oe-30-15-27730-R38) 2011; 27
Zhang (oe-30-15-27730-R2) 2013; 76
Li (oe-30-15-27730-R39) 2017; 43
De Jonge (oe-30-15-27730-R17) 2011; 6
Ali (oe-30-15-27730-R16) 2017; 11
Juodėnas (oe-30-15-27730-R32) 2020; 7
Staechelin (oe-30-15-27730-R27) 2021; 8
Bigot (oe-30-15-27730-R28) 2000; 251
Hartland (oe-30-15-27730-R6) 2011; 111
Sánchez-Iglesias (oe-30-15-27730-R47) 2017; 139
Kedawat (oe-30-15-27730-R33) 2019; 4
Su (oe-30-15-27730-R42) 2019; 19
Iagatti (oe-30-15-27730-R45) 2019; 15
Hartland (oe-30-15-27730-R35) 2002; 106
Link (oe-30-15-27730-R25) 2000; 19
Carbó-Argibay (oe-30-15-27730-R48) 2016; 56
Cao (oe-30-15-27730-R40) 2014; 195
Peckus (oe-30-15-27730-R46) 2020; 529
Soavi (oe-30-15-27730-R31) 2016; 10
Chen (oe-30-15-27730-R51) 2019; 27
Peckus (oe-30-15-27730-R50) 2020; 117
Zijlstra (oe-30-15-27730-R52) 2008; 8
Atwater (oe-30-15-27730-R1) 2010; 9
Zhang (oe-30-15-27730-R43) 2018; 8
Priyadarshini (oe-30-15-27730-R44) 2021; 117
Hu (oe-30-15-27730-R11) 2017; 10
Huang (oe-30-15-27730-R24) 2007; 111
Peckus (oe-30-15-27730-R22) 2017; 121
Myroshnychenko (oe-30-15-27730-R41) 2008; 37
Cardinal (oe-30-15-27730-R30) 2012; 3
Gao (oe-30-15-27730-R5) 2021; 93
Huang (oe-30-15-27730-R10) 2011; 47
Dzimitrowicz (oe-30-15-27730-R12) 2019; 12
Peckus (oe-30-15-27730-R49) 2017; 12
Bykov (oe-30-15-27730-R23) 2021; 10
Huang (oe-30-15-27730-R9) 2007; 2
Verma (oe-30-15-27730-R4) 2018; 4
Kuppe (oe-30-15-27730-R3) 2020; 8
Murray (oe-30-15-27730-R13) 2000; 30
Krishnakanth (oe-30-15-27730-R34) 2019; 95
Mioc (oe-30-15-27730-R14) 2018; 9
Pelton (oe-30-15-27730-R29) 2009; 4
Newhouse (oe-30-15-27730-R37) 2011; 2
Wu (oe-30-15-27730-R36) 2016; 24
Maciulevičius (oe-30-15-27730-R20) 2013; 41
Bin Jeon (oe-30-15-27730-R8) 2019; 9
Link (oe-30-15-27730-R26) 2000; 61
References_xml – volume: 9
  start-page: 205
  year: 2010
  ident: oe-30-15-27730-R1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2629
– volume: 106
  start-page: 743
  year: 2002
  ident: oe-30-15-27730-R35
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp013887+
– volume: 95
  start-page: 109239
  year: 2019
  ident: oe-30-15-27730-R34
  publication-title: Optical Materials
  doi: 10.1016/j.optmat.2019.109239
– volume: 8
  start-page: 3493
  year: 2008
  ident: oe-30-15-27730-R52
  publication-title: Nano Lett.
  doi: 10.1021/nl802480q
– volume: 251
  start-page: 181
  year: 2000
  ident: oe-30-15-27730-R28
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(99)00298-0
– volume: 12
  start-page: 4118
  year: 2019
  ident: oe-30-15-27730-R12
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2016.04.004
– volume: 195
  start-page: 332
  year: 2014
  ident: oe-30-15-27730-R40
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2014.01.056
– volume: 4
  start-page: 492
  year: 2009
  ident: oe-30-15-27730-R29
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.192
– volume: 125
  start-page: 8656
  year: 2021
  ident: oe-30-15-27730-R19
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c10680
– volume: 4
  start-page: 12626
  year: 2019
  ident: oe-30-15-27730-R33
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01157
– volume: 10
  start-page: 2929
  year: 2021
  ident: oe-30-15-27730-R23
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2021-0278
– volume: 93
  start-page: 2480
  year: 2021
  ident: oe-30-15-27730-R5
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c04518
– volume: 2
  start-page: 228
  year: 2011
  ident: oe-30-15-27730-R37
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz101716h
– volume: 529
  start-page: 147040
  year: 2020
  ident: oe-30-15-27730-R46
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147040
– volume: 139
  start-page: 107
  year: 2017
  ident: oe-30-15-27730-R47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12143
– volume: 8
  start-page: 1901166
  year: 2020
  ident: oe-30-15-27730-R3
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201901166
– volume: 3
  start-page: 613
  year: 2012
  ident: oe-30-15-27730-R30
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3000992
– volume: 27
  start-page: 11098
  year: 2011
  ident: oe-30-15-27730-R38
  publication-title: Langmuir
  doi: 10.1021/la201938u
– volume: 10
  start-page: 2251
  year: 2016
  ident: oe-30-15-27730-R31
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06904
– volume: 37
  start-page: 1792
  year: 2008
  ident: oe-30-15-27730-R41
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b711486a
– volume: 10
  start-page: 674
  year: 2017
  ident: oe-30-15-27730-R11
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201600062
– volume: 15
  start-page: 2438
  year: 2019
  ident: oe-30-15-27730-R45
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.15.236
– volume: 4
  start-page: 4
  year: 2018
  ident: oe-30-15-27730-R4
  publication-title: Glob. J. Nanomed.
– volume: 30
  start-page: 545
  year: 2000
  ident: oe-30-15-27730-R13
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.matsci.30.1.545
– volume: 43
  start-page: 33
  year: 2017
  ident: oe-30-15-27730-R39
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2017.01.010
– volume: 111
  start-page: 3858
  year: 2011
  ident: oe-30-15-27730-R6
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002547
– volume: 76
  start-page: 046401
  year: 2013
  ident: oe-30-15-27730-R2
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/76/4/046401
– volume: 113
  start-page: 4277
  year: 2009
  ident: oe-30-15-27730-R15
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8082425
– volume: 6
  start-page: 695
  year: 2011
  ident: oe-30-15-27730-R17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.161
– volume: 41
  start-page: 531
  year: 2013
  ident: oe-30-15-27730-R20
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2013.03.112
– volume: 9
  start-page: 13635
  year: 2019
  ident: oe-30-15-27730-R8
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50032-3
– volume: 19
  start-page: 409
  year: 2000
  ident: oe-30-15-27730-R25
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/01442350050034180
– volume: 18
  start-page: 4053
  year: 2018
  ident: oe-30-15-27730-R18
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02024
– volume: 121
  start-page: 24159
  year: 2017
  ident: oe-30-15-27730-R22
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b06667
– volume: 8
  start-page: 752
  year: 2021
  ident: oe-30-15-27730-R27
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.1c00078
– volume: 7
  start-page: 3130
  year: 2020
  ident: oe-30-15-27730-R32
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.0c01187
– volume: 2
  start-page: 681
  year: 2007
  ident: oe-30-15-27730-R9
  publication-title: Nanomedicine
  doi: 10.2217/17435889.2.5.681
– volume: 27
  start-page: 18146
  year: 2019
  ident: oe-30-15-27730-R51
  publication-title: Opt. Express
  doi: 10.1364/OE.27.018146
– volume: 111
  start-page: 10751
  year: 2007
  ident: oe-30-15-27730-R24
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0738917
– volume: 117
  start-page: 111206
  year: 2021
  ident: oe-30-15-27730-R44
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2021.111206
– volume: 61
  start-page: 6086
  year: 2000
  ident: oe-30-15-27730-R26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.6086
– volume: 56
  start-page: 214
  year: 2016
  ident: oe-30-15-27730-R48
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.201500032
– volume: 24
  start-page: 12458
  year: 2016
  ident: oe-30-15-27730-R36
  publication-title: Opt. Express
  doi: 10.1364/OE.24.012458
– volume: 9
  start-page: 1
  year: 2018
  ident: oe-30-15-27730-R14
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00429
– volume: 11
  start-page: 016011
  year: 2017
  ident: oe-30-15-27730-R16
  publication-title: J. Nanophotonics
  doi: 10.1117/1.JNP.11.016011
– volume: 117
  start-page: 113795
  year: 2020
  ident: oe-30-15-27730-R50
  publication-title: Phys. E (Amsterdam, Neth.)
  doi: 10.1016/j.physe.2019.113795
– volume: 19
  start-page: 3091
  year: 2019
  ident: oe-30-15-27730-R42
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00503
– volume: 8
  start-page: 10499
  year: 2018
  ident: oe-30-15-27730-R43
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28909-6
– volume: 12
  start-page: 47
  year: 2017
  ident: oe-30-15-27730-R49
  publication-title: Plasmonics
  doi: 10.1007/s11468-016-0227-0
– volume: 47
  start-page: 1
  year: 2011
  ident: oe-30-15-27730-R10
  publication-title: Alexandria J. Med.
  doi: 10.1016/j.ajme.2011.01.001
SSID ssj0014797
Score 2.4631805
Snippet The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 27730
SubjectTerms Physics
Title Shape influence on the ultrafast plasmonic properties of gold nanoparticles
URI https://www.proquest.com/docview/2725199882
https://cnrs.hal.science/hal-04274290
Volume 30
WOSCitedRecordID wos000828676200144&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfaAdIuiE-xAZVBHJCmQJekiX2soGjS2Iq0IvUWObbDEG0S5aPqiRN_OO85rtduO4wDFyuynS-_p-ef_Z5_j5B3gqdcBHrk-ZlIvVBlzGMy5Z7WyL4_0jDHC5NsIj4_Z_M5_9br_dmchVkt4jxn6zUv_6uooQ6EjUdn_0Hc7qFQAdcgdChB7FDeSfAXl6JEJhCbfMR6A47aRVOJTNQNJo6ulybxTYk78RVSqiJm_FEs1FEuclhG22i5beQ6LQ2hs16XLmjDWFT5q7VIfAlCEq5lJpYtHl03aPUzGBC8QD5esEV14yaDMwDwHY3Bqai2fPwXJZ56cNFnY_jvVm1vUfgmnHXHqsIaEhaqdmbVt9RZU2xdNFblRtuGNY67xhsmP4hCEMl08iEEsNURu-_Sal-b7lwQovHlRWEynSTdrX1yz49HHAMDz35PnC8qjLsUPZsPtvxUcOtH99YdVNO_xJjaa1O7wSuzR-ShXWjQcSfKx6Sn8yfkgQn4lfVTcmrUhDo1oUVOQU2oUxPq1IReqQktMopqQnfU5Bn5_mUy-3Ti2cQangz8uIFSSp2FUcgjIYWSLAPQHAQ8G0UiChUbSpam7BiwuU4jQJCAEodC-kpFPFLDVAXPyV5e5PoFoTFTx0JiwmepQmQCkjIUAaaqZFxp5R-Q95uBSaRlncfkJ4vkxvAfkLeua9lRrdzaCUbXtSM5-sn4a4J1mDUG0NVwBZ3ebAY_AWuJLjCR66KtEz_Gk9oclpWHd3nbS7J_pc-vyF5Ttfo1uS9Xzc-6GpB-PGcDs4szMCrzF9GsjNI
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+influence+on+the+ultrafast+plasmonic+properties+of+gold+nanoparticles&rft.jtitle=Optics+express&rft.au=Peckus%2C+Domantas&rft.au=Tamulevi%C4%8Dien%C4%97%2C+Asta&rft.au=Mougin%2C+Karine&rft.au=Spangenberg%2C+Arnaud&rft.date=2022-07-18&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=30&rft.issue=15&rft.spage=27730&rft_id=info:doi/10.1364%2FOE.463961&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_463961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon