Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables

Linear programming problems with trapezoidal fuzzy variables (FVLP) have recently attracted some interest. Some methods have been developed for solving these problems by introducing and solving certain auxiliary problems. Here, we apply a linear ranking function to order trapezoidal fuzzy numbers. T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fuzzy sets and systems Ročník 158; číslo 17; s. 1961 - 1978
Hlavní autoři: Mahdavi-Amiri, N., Nasseri, S.H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.09.2007
Elsevier
Témata:
ISSN:0165-0114, 1872-6801
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Linear programming problems with trapezoidal fuzzy variables (FVLP) have recently attracted some interest. Some methods have been developed for solving these problems by introducing and solving certain auxiliary problems. Here, we apply a linear ranking function to order trapezoidal fuzzy numbers. Then, we establish the dual problem of the linear programming problem with trapezoidal fuzzy variables and hence deduce some duality results. In particular, we prove that the auxiliary problem is indeed the dual of the FVLP problem. Having established the dual problem, the results will then follow as natural extensions of duality results for linear programming problems with crisp data. Finally, using the results, we develop a new dual algorithm for solving the FVLP problem directly, making use of the primal simplex tableau. This algorithm will be useful for sensitivity (or post optimality) analysis when using primal simplex tableaus.
ISSN:0165-0114
1872-6801
DOI:10.1016/j.fss.2007.05.005