Maximizing signless Laplacian or adjacency spectral radius of graphs subject to fixed connectivity

In this paper, we characterize the graphs with maximum signless Laplacian or adjacency spectral radius among all graphs with fixed order and given vertex or edge connectivity. We also discuss the minimum signless Laplacian or adjacency spectral radius of graphs subject to fixed connectivity. Consequ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Linear algebra and its applications Ročník 433; číslo 6; s. 1180 - 1186
Hlavní autori: Ye, Miao-Lin, Fan, Yi-Zheng, Wang, Hai-Feng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier Inc 01.11.2010
Elsevier
Predmet:
ISSN:0024-3795
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we characterize the graphs with maximum signless Laplacian or adjacency spectral radius among all graphs with fixed order and given vertex or edge connectivity. We also discuss the minimum signless Laplacian or adjacency spectral radius of graphs subject to fixed connectivity. Consequently we give an upper bound of signless Laplacian or adjacency spectral radius of graphs in terms of connectivity. In addition we confirm a conjecture of Aouchiche and Hansen involving adjacency spectral radius and connectivity.
ISSN:0024-3795
DOI:10.1016/j.laa.2010.04.045