Maximizing signless Laplacian or adjacency spectral radius of graphs subject to fixed connectivity

In this paper, we characterize the graphs with maximum signless Laplacian or adjacency spectral radius among all graphs with fixed order and given vertex or edge connectivity. We also discuss the minimum signless Laplacian or adjacency spectral radius of graphs subject to fixed connectivity. Consequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications Jg. 433; H. 6; S. 1180 - 1186
Hauptverfasser: Ye, Miao-Lin, Fan, Yi-Zheng, Wang, Hai-Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Inc 01.11.2010
Elsevier
Schlagworte:
ISSN:0024-3795
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we characterize the graphs with maximum signless Laplacian or adjacency spectral radius among all graphs with fixed order and given vertex or edge connectivity. We also discuss the minimum signless Laplacian or adjacency spectral radius of graphs subject to fixed connectivity. Consequently we give an upper bound of signless Laplacian or adjacency spectral radius of graphs in terms of connectivity. In addition we confirm a conjecture of Aouchiche and Hansen involving adjacency spectral radius and connectivity.
ISSN:0024-3795
DOI:10.1016/j.laa.2010.04.045