Multivariate Algorithmics for Finding Cohesive Subnetworks

Community detection is an important task in the analysis of biological, social or technical networks. We survey different models of cohesive graphs, commonly referred to as clique relaxations, that are used in the detection of network communities. For each clique relaxation, we give an overview of b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithms Ročník 9; číslo 1; s. 21
Hlavný autor: Komusiewicz, Christian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: MDPI AG 01.03.2016
Predmet:
ISSN:1999-4893, 1999-4893
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Community detection is an important task in the analysis of biological, social or technical networks. We survey different models of cohesive graphs, commonly referred to as clique relaxations, that are used in the detection of network communities. For each clique relaxation, we give an overview of basic model properties and of the complexity of the problem of finding large cohesive subgraphs under this model. Since this problem is usually NP-hard, we focus on combinatorial fixed-parameter algorithms exploiting typical structural properties of input networks.
ISSN:1999-4893
1999-4893
DOI:10.3390/a9010021