Numerical solution for high order differential equations using a hybrid neural network—Optimization method

This paper reports a novel hybrid method based on optimization techniques and neural networks methods for the solution of high order ordinary differential equations. Here neural networks is considered as a part of large field called neural computing or soft computing. This means that we propose a ne...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 183; číslo 1; s. 260 - 271
Hlavní autoři: Malek, A., Shekari Beidokhti, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 01.12.2006
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper reports a novel hybrid method based on optimization techniques and neural networks methods for the solution of high order ordinary differential equations. Here neural networks is considered as a part of large field called neural computing or soft computing. This means that we propose a new solution method for the approximated solution of high order ordinary differential equations using innovative mathematical tools and neural-like systems of computation. This hybrid method can result in improved numerical methods for solving initial/boundary value problems, without using preassigned discretisation points. The mixture of feed forward neural networks and optimization techniques, based on Nelder–Mead method is used to introduce the close analytic form of the solution for the differential equation. Excellent test results are obtained for the solution of lower and higher order differential equations. The model finds approximation solution for the differential equation inside and outside the domain of consideration for the close enough neighborhood of initial/boundary points. Numerical examples are described to demonstrate the method.
AbstractList This paper reports a novel hybrid method based on optimization techniques and neural networks methods for the solution of high order ordinary differential equations. Here neural networks is considered as a part of large field called neural computing or soft computing. This means that we propose a new solution method for the approximated solution of high order ordinary differential equations using innovative mathematical tools and neural-like systems of computation. This hybrid method can result in improved numerical methods for solving initial/boundary value problems, without using preassigned discretisation points. The mixture of feed forward neural networks and optimization techniques, based on Nelder–Mead method is used to introduce the close analytic form of the solution for the differential equation. Excellent test results are obtained for the solution of lower and higher order differential equations. The model finds approximation solution for the differential equation inside and outside the domain of consideration for the close enough neighborhood of initial/boundary points. Numerical examples are described to demonstrate the method.
Author Malek, A.
Shekari Beidokhti, R.
Author_xml – sequence: 1
  givenname: A.
  surname: Malek
  fullname: Malek, A.
  email: mala@modares.ac.ir
– sequence: 2
  givenname: R.
  surname: Shekari Beidokhti
  fullname: Shekari Beidokhti, R.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18402161$$DView record in Pascal Francis
BookMark eNp9kM9u1DAQhy1UJLaFB-DmC8ekYztxEnFCFf-kil7gbHntcddLYi-2AyonHoIn7JPg7SIhcehppJnvG-n3OydnIQYk5CWDlgGTl_tWL6blALKFvgU5PiEbNg6i6WU3nZENwCQbASCekfOc9wAwSNZtyPxpXTB5o2ea47wWHwN1MdGdv93RmCwmar1zmDAUXyH8tuojlOmafbilmu7utslbGnBN9R6w_Ijp6_2v3zeH4hf_84GmC5ZdtM_JU6fnjC_-zgvy5d3bz1cfmuub9x-v3lw3RvChNLqbhh6n7SgG4XgPw3bUW275iKNzdQ1jJ7h2Vuq-m7jhXBxRywZjJLfYiwvy6vT3oHNN5pIOxmd1SH7R6U6xsQPOJKscO3EmxZwTun8IqGOtaq9qrepYq4Je1VqrM_znGF8eQpak_fyo-fpkYo3-3WNS2XgMBq1PaIqy0T9i_wGknpd1
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1155_2014_906376
crossref_primary_10_1080_0954898X_2021_1884762
crossref_primary_10_1007_s00500_020_05401_w
crossref_primary_10_1016_j_asoc_2015_10_069
crossref_primary_10_3390_sym11020246
crossref_primary_10_1007_s40096_021_00424_2
crossref_primary_10_3390_computers12040082
crossref_primary_10_1007_s40314_021_01475_w
crossref_primary_10_1016_j_cam_2016_04_002
crossref_primary_10_1007_s11831_024_10145_z
crossref_primary_10_1002_nme_6828
crossref_primary_10_1016_j_neucom_2016_04_050
crossref_primary_10_1007_s13235_022_00477_5
crossref_primary_10_1007_s11401_021_0253_x
crossref_primary_10_1002_gamm_202100006
crossref_primary_10_1155_2013_181895
crossref_primary_10_1007_s11600_025_01688_1
crossref_primary_10_1088_1402_4896_ad3f9a
crossref_primary_10_1515_eng_2024_0030
crossref_primary_10_1007_s11831_023_09890_4
crossref_primary_10_1155_2015_561489
crossref_primary_10_1007_s40314_022_02098_5
crossref_primary_10_1016_j_asoc_2015_07_012
crossref_primary_10_1080_09540091_2019_1604627
crossref_primary_10_1007_s11063_022_10968_6
crossref_primary_10_1109_TNNLS_2020_2979706
crossref_primary_10_1145_3514228
crossref_primary_10_1371_journal_pone_0223476
crossref_primary_10_1007_s00366_022_01603_y
crossref_primary_10_1007_s10614_022_10279_x
crossref_primary_10_1016_j_amc_2015_05_122
crossref_primary_10_1080_09540091_2019_1605498
crossref_primary_10_1007_s12206_024_0624_9
crossref_primary_10_1155_2012_683483
crossref_primary_10_1007_s00366_021_01373_z
crossref_primary_10_1016_j_amc_2014_08_085
crossref_primary_10_1016_j_asoc_2009_07_006
crossref_primary_10_1007_s11063_018_9911_8
crossref_primary_10_1088_1674_1056_ac9cb9
crossref_primary_10_3390_math11071643
crossref_primary_10_1108_GS_12_2022_0119
crossref_primary_10_1016_j_asoc_2013_04_013
crossref_primary_10_1007_s00521_015_2046_1
crossref_primary_10_1016_j_neucom_2010_12_026
crossref_primary_10_1016_j_neunet_2020_12_028
crossref_primary_10_1108_EC_08_2019_0387
crossref_primary_10_1186_s13662_018_1927_x
crossref_primary_10_1007_s10614_020_10070_w
crossref_primary_10_23939_cds2023_01_108
crossref_primary_10_1007_s00500_019_04267_x
crossref_primary_10_1016_j_jcp_2022_111848
crossref_primary_10_1080_0954898X_2020_1807636
crossref_primary_10_1162_NECO_a_00858
crossref_primary_10_1007_s00521_011_0621_7
crossref_primary_10_1108_EC_11_2021_0683
crossref_primary_10_1080_0954898X_2021_2015005
crossref_primary_10_1109_TGRS_2023_3333663
crossref_primary_10_1007_s10231_013_0378_y
crossref_primary_10_1016_j_camwa_2011_09_028
crossref_primary_10_1007_s11063_021_10508_8
crossref_primary_10_35414_akufemubid_1558289
crossref_primary_10_1007_s00521_016_2722_9
crossref_primary_10_1155_2017_7637651
crossref_primary_10_1007_s00366_022_01703_9
crossref_primary_10_1007_s00521_013_1526_4
crossref_primary_10_1016_j_jfranklin_2013_07_016
crossref_primary_10_1088_1757_899X_225_1_012040
crossref_primary_10_1109_TAP_2022_3186710
crossref_primary_10_1155_2020_6351279
crossref_primary_10_1371_journal_pone_0121728
crossref_primary_10_1007_s11063_016_9562_6
crossref_primary_10_1016_j_jcp_2023_112031
crossref_primary_10_1007_s10472_010_9222_x
crossref_primary_10_1016_j_asoc_2012_03_041
crossref_primary_10_1155_2013_650467
crossref_primary_10_1007_s11071_017_3616_9
crossref_primary_10_3390_a12010010
crossref_primary_10_3390_computers12110226
crossref_primary_10_1016_j_neucom_2014_07_036
crossref_primary_10_1155_2015_196595
crossref_primary_10_1016_j_jcp_2021_110444
Cites_doi 10.1016/0021-9991(90)90007-N
10.1016/0895-7177(94)00160-X
10.1080/00207169808804651
10.1016/0895-7177(94)90095-7
10.1002/cnm.1640100303
10.1016/0893-6080(89)90020-8
10.1016/S0893-6080(97)00015-4
10.1093/imanum/15.4.523
10.1109/MASSP.1987.1165576
10.1137/S1052623496303470
10.1016/0893-6080(94)90052-3
10.1093/comjnl/7.4.308
10.1109/72.712178
10.1109/ICDSP.2002.1028323
ContentType Journal Article
Copyright 2006 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2006.05.068
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EISSN 1873-5649
EndPage 271
ExternalDocumentID 18402161
10_1016_j_amc_2006_05_068
S0096300306005583
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-a4975e9b8373f2507b8ab2d28e8ff9b808432afd6a5492c223b837d17cc62de53
ISICitedReferencesCount 164
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000243828600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Mon Jul 21 09:16:57 EDT 2025
Tue Nov 18 21:55:52 EST 2025
Sat Nov 29 06:12:10 EST 2025
Fri Feb 23 02:29:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multidimensional optimization
Nelder–Mead method
Ordinary differential equations
Feed forward artificial neural networks
Mixed distribution
Neural computation
Differential equation
Initial value problem
Optimization method
Numerical method
Neural network
Nelder-Mead method
Computing
Many-dimensional calculations
Partial differential equation
Discretization method
Boundary value problem
Applied mathematics
Numerical solution
Mathematical programming
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-a4975e9b8373f2507b8ab2d28e8ff9b808432afd6a5492c223b837d17cc62de53
PageCount 12
ParticipantIDs pascalfrancis_primary_18402161
crossref_primary_10_1016_j_amc_2006_05_068
crossref_citationtrail_10_1016_j_amc_2006_05_068
elsevier_sciencedirect_doi_10_1016_j_amc_2006_05_068
PublicationCentury 2000
PublicationDate 2006-12-01
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2006
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Lambert (bib2) 1983
Minsky, Papert (bib13) 1969
Lagarias, Reeds, Wright, Wright (bib26) 1998; 9
Haykin (bib14) 1999
Picton (bib12) 2000
Lee, Kang (bib4) 1990; 91
Van der Smagt (bib23) 1994; 7
Likas, Karras, Lagaris (bib22) 1998; 67
Dissanayake, Phan-Thien (bib7) 1994; 10
Rao (bib24) 1989
Lagaris, Likas, Fotiadis (bib9) 1998; 9
Kincaid, Cheney (bib21) 2002
Stanley (bib16) 1990
Schalkoff (bib11) 1997
Gottlieb, Orszag (bib3) 1977; vol. 26
Hornick, Stinchcombe, white (bib18) 1989; 2
Khanna (bib15) 1990
Lapedes, Farber (bib19) 1988
K. Valasoulis, D.I. Fotiadis, I.E. Lagaris, A. Likas, Solving differential equations with neural networks: implementation on a DSP platform, in: Proceeding of 14th International Conference on Digital Signal Processing, Santorini, Greece, July 2002, pp. 1265–1268.
Lippmann (bib17) 1987
Nelder, Mead (bib25) 1965; 7
Bernardi, Maday (bib28) 1991
Meade, Fernandez (bib5) 1994; 19
Stoer, Bulirsch (bib1) 1993
Malek, Phillips (bib27) 1995; 15
Bo-An Liu, B. Jammes, Solving ordinary differential equations by neural networks, in: Proceeding of 13th European Simulation Multi-Conference Modelling and Simulation: A Tool for the Next Millennium, Warsaw, Poland, June 1–4, 1999.
Meade, Fernandez (bib6) 1994; 20
Mckeown, Stella, Hall (bib20) 1997; 10
Rao (10.1016/j.amc.2006.05.068_bib24) 1989
Picton (10.1016/j.amc.2006.05.068_bib12) 2000
Lapedes (10.1016/j.amc.2006.05.068_bib19) 1988
Kincaid (10.1016/j.amc.2006.05.068_bib21) 2002
Meade (10.1016/j.amc.2006.05.068_bib5) 1994; 19
Nelder (10.1016/j.amc.2006.05.068_bib25) 1965; 7
Lambert (10.1016/j.amc.2006.05.068_bib2) 1983
Lee (10.1016/j.amc.2006.05.068_bib4) 1990; 91
Meade (10.1016/j.amc.2006.05.068_bib6) 1994; 20
Lagarias (10.1016/j.amc.2006.05.068_bib26) 1998; 9
Minsky (10.1016/j.amc.2006.05.068_bib13) 1969
Mckeown (10.1016/j.amc.2006.05.068_bib20) 1997; 10
Hornick (10.1016/j.amc.2006.05.068_bib18) 1989; 2
Khanna (10.1016/j.amc.2006.05.068_bib15) 1990
Van der Smagt (10.1016/j.amc.2006.05.068_bib23) 1994; 7
10.1016/j.amc.2006.05.068_bib10
Lippmann (10.1016/j.amc.2006.05.068_bib17) 1987
Dissanayake (10.1016/j.amc.2006.05.068_bib7) 1994; 10
Likas (10.1016/j.amc.2006.05.068_bib22) 1998; 67
Stanley (10.1016/j.amc.2006.05.068_bib16) 1990
Bernardi (10.1016/j.amc.2006.05.068_bib28) 1991
Lagaris (10.1016/j.amc.2006.05.068_bib9) 1998; 9
Gottlieb (10.1016/j.amc.2006.05.068_bib3) 1977; vol. 26
Haykin (10.1016/j.amc.2006.05.068_bib14) 1999
Schalkoff (10.1016/j.amc.2006.05.068_bib11) 1997
Malek (10.1016/j.amc.2006.05.068_bib27) 1995; 15
10.1016/j.amc.2006.05.068_bib8
Stoer (10.1016/j.amc.2006.05.068_bib1) 1993
References_xml – volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib18
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– volume: 15
  start-page: 523
  year: 1995
  end-page: 553
  ident: bib27
  article-title: Pseudospectral collocation methods for fourth-order differential equations
  publication-title: IMA Journal of Numerical Analysis
– year: 1969
  ident: bib13
  article-title: Perceptrons
– start-page: 4
  year: 1987
  end-page: 22
  ident: bib17
  article-title: An introduction to computing with neural nets
  publication-title: IEEE ASSP Magazine
– year: 1989
  ident: bib24
  article-title: Optimization: Theory and Applications
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: bib9
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Transactions on Neural Networks
– year: 2000
  ident: bib12
  article-title: Neural Networks
– year: 1991
  ident: bib28
  article-title: Some spectral approximations of one-dimensional fourth-order problems
  publication-title: Progress in Approximation Theory
– year: 1993
  ident: bib1
  article-title: Introduction to Numerical Analysis
– volume: vol. 26
  year: 1977
  ident: bib3
  article-title: Numerical analysis of spectral methods: theory and applications
  publication-title: CBMS-NSF Regional Conference Series in Applied Mathematics
– year: 1990
  ident: bib16
  article-title: Introduction to Neural Networks
– volume: 7
  start-page: 1
  year: 1994
  end-page: 11
  ident: bib23
  article-title: Minimization methods for training feedforward neural networks
  publication-title: Neural Networks
– volume: 19
  start-page: 1
  year: 1994
  end-page: 25
  ident: bib5
  article-title: The numerical solution of linear ordinary differential equations by feedforward neural networks
  publication-title: Mathematical and Computer Modelling
– year: 1983
  ident: bib2
  article-title: Computational Methods in Ordinary Differential Equations
– year: 1997
  ident: bib11
  article-title: Artificial Neural Networks
– volume: 20
  start-page: 19
  year: 1994
  end-page: 44
  ident: bib6
  article-title: Solution of nonlinear ordinary differential equations by feedforward neural networks
  publication-title: Mathematical and Computer Modelling
– volume: 10
  start-page: 195
  year: 1994
  end-page: 201
  ident: bib7
  article-title: Neural-network-based approximations for solving partial differential equations
  publication-title: Communications in Numerical Methods in Engineering
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: bib25
  article-title: A simplex method for function minimization
  publication-title: Computer Journal
– volume: 10
  start-page: 1455
  year: 1997
  end-page: 1463
  ident: bib20
  article-title: Some numerical aspects of the training problem for feed-forward neural nets
  publication-title: Neural Networks
– start-page: 442
  year: 1988
  end-page: 456
  ident: bib19
  article-title: How neural nets work?
  publication-title: Neural Information Processing Systems
– year: 1999
  ident: bib14
  article-title: Neural Networks: A Comprehensive Foundation
– reference: K. Valasoulis, D.I. Fotiadis, I.E. Lagaris, A. Likas, Solving differential equations with neural networks: implementation on a DSP platform, in: Proceeding of 14th International Conference on Digital Signal Processing, Santorini, Greece, July 2002, pp. 1265–1268.
– volume: 9
  start-page: 112
  year: 1998
  end-page: 147
  ident: bib26
  article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions
  publication-title: SIAM Journal of Optimization
– volume: 67
  start-page: 33
  year: 1998
  end-page: 46
  ident: bib22
  article-title: Neural-network training and simulation using a multidimensional optimization system
  publication-title: International Journal of Computer Mathematics
– year: 2002
  ident: bib21
  article-title: Numerical Analysis: Mathematics of Scientific Computing
– reference: Bo-An Liu, B. Jammes, Solving ordinary differential equations by neural networks, in: Proceeding of 13th European Simulation Multi-Conference Modelling and Simulation: A Tool for the Next Millennium, Warsaw, Poland, June 1–4, 1999.
– year: 1990
  ident: bib15
  article-title: Foundations of Neural Networks
– volume: 91
  start-page: 110
  year: 1990
  end-page: 131
  ident: bib4
  article-title: Neural algorithms for solving differential equations
  publication-title: Journal of Computational Physics
– year: 1969
  ident: 10.1016/j.amc.2006.05.068_bib13
– volume: 91
  start-page: 110
  year: 1990
  ident: 10.1016/j.amc.2006.05.068_bib4
  article-title: Neural algorithms for solving differential equations
  publication-title: Journal of Computational Physics
  doi: 10.1016/0021-9991(90)90007-N
– volume: 20
  start-page: 19
  issue: 9
  year: 1994
  ident: 10.1016/j.amc.2006.05.068_bib6
  article-title: Solution of nonlinear ordinary differential equations by feedforward neural networks
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/0895-7177(94)00160-X
– volume: 67
  start-page: 33
  year: 1998
  ident: 10.1016/j.amc.2006.05.068_bib22
  article-title: Neural-network training and simulation using a multidimensional optimization system
  publication-title: International Journal of Computer Mathematics
  doi: 10.1080/00207169808804651
– volume: 19
  start-page: 1
  issue: 12
  year: 1994
  ident: 10.1016/j.amc.2006.05.068_bib5
  article-title: The numerical solution of linear ordinary differential equations by feedforward neural networks
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/0895-7177(94)90095-7
– volume: 10
  start-page: 195
  year: 1994
  ident: 10.1016/j.amc.2006.05.068_bib7
  article-title: Neural-network-based approximations for solving partial differential equations
  publication-title: Communications in Numerical Methods in Engineering
  doi: 10.1002/cnm.1640100303
– volume: vol. 26
  year: 1977
  ident: 10.1016/j.amc.2006.05.068_bib3
  article-title: Numerical analysis of spectral methods: theory and applications
– year: 1997
  ident: 10.1016/j.amc.2006.05.068_bib11
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.amc.2006.05.068_bib18
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– year: 2000
  ident: 10.1016/j.amc.2006.05.068_bib12
– year: 2002
  ident: 10.1016/j.amc.2006.05.068_bib21
– start-page: 442
  year: 1988
  ident: 10.1016/j.amc.2006.05.068_bib19
  article-title: How neural nets work?
– year: 1990
  ident: 10.1016/j.amc.2006.05.068_bib16
– volume: 10
  start-page: 1455
  issue: 8
  year: 1997
  ident: 10.1016/j.amc.2006.05.068_bib20
  article-title: Some numerical aspects of the training problem for feed-forward neural nets
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(97)00015-4
– volume: 15
  start-page: 523
  year: 1995
  ident: 10.1016/j.amc.2006.05.068_bib27
  article-title: Pseudospectral collocation methods for fourth-order differential equations
  publication-title: IMA Journal of Numerical Analysis
  doi: 10.1093/imanum/15.4.523
– year: 1993
  ident: 10.1016/j.amc.2006.05.068_bib1
– start-page: 4
  year: 1987
  ident: 10.1016/j.amc.2006.05.068_bib17
  article-title: An introduction to computing with neural nets
  publication-title: IEEE ASSP Magazine
  doi: 10.1109/MASSP.1987.1165576
– year: 1999
  ident: 10.1016/j.amc.2006.05.068_bib14
– volume: 9
  start-page: 112
  issue: 1
  year: 1998
  ident: 10.1016/j.amc.2006.05.068_bib26
  article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions
  publication-title: SIAM Journal of Optimization
  doi: 10.1137/S1052623496303470
– year: 1991
  ident: 10.1016/j.amc.2006.05.068_bib28
  article-title: Some spectral approximations of one-dimensional fourth-order problems
– volume: 7
  start-page: 1
  issue: 1
  year: 1994
  ident: 10.1016/j.amc.2006.05.068_bib23
  article-title: Minimization methods for training feedforward neural networks
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(94)90052-3
– year: 1983
  ident: 10.1016/j.amc.2006.05.068_bib2
– volume: 7
  start-page: 308
  year: 1965
  ident: 10.1016/j.amc.2006.05.068_bib25
  article-title: A simplex method for function minimization
  publication-title: Computer Journal
  doi: 10.1093/comjnl/7.4.308
– year: 1990
  ident: 10.1016/j.amc.2006.05.068_bib15
– year: 1989
  ident: 10.1016/j.amc.2006.05.068_bib24
– ident: 10.1016/j.amc.2006.05.068_bib8
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 10.1016/j.amc.2006.05.068_bib9
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.712178
– ident: 10.1016/j.amc.2006.05.068_bib10
  doi: 10.1109/ICDSP.2002.1028323
SSID ssj0007614
Score 2.264494
Snippet This paper reports a novel hybrid method based on optimization techniques and neural networks methods for the solution of high order ordinary differential...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 260
SubjectTerms Applied sciences
Computer science; control theory; systems
Exact sciences and technology
Feed forward artificial neural networks
Global analysis, analysis on manifolds
Language theory and syntactical analysis
Mathematical analysis
Mathematics
Multidimensional optimization
Nelder–Mead method
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Sciences and techniques of general use
Theoretical computing
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Title Numerical solution for high order differential equations using a hybrid neural network—Optimization method
URI https://dx.doi.org/10.1016/j.amc.2006.05.068
Volume 183
WOSCitedRecordID wos000243828600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgGEEJ9iAyYfOBGlcuwkdo4FDQHSCkJD6i1ynFjd1mZlbabtxoE_gb-Qv4Tn2E4_pk3swCWK3MRJ-_v1vefn94HQG8GVjKTWYVmkBBYoqQwzqgo4iwQp4pRxLdtmE3w4FKNR9rXX--VzYc4nvK7FxUU2-69QwxiAbVJnbwF3NykMwDmADkeAHY7_BPywsZswk8A_pw0lNHWJg7bQZtcUZWG85dWPxkXDNa3bQAbjS5PFFZhKl_B5bePEfVBE_AVkzNQlb7r-06sGrrdqp1052LlPnZs169v-B6CbWlk86Hd-nnF1Aov34F11VJ6ejG2owbf-hmtiGebhxG1mAusIWxe37AqvnPC0nQWcHqa2NcsVEW-9Dcd9OVVuLynpE9uaZ72c9oaa64IPfVzbcQ5TmDacaU6SHKa4g7YpTzIQ79uDT_ujz51G56mtEe-_jt8db-MEN97jOvvmwUzOAXpt26Ws2DCHj9BDt_jAA0uax6hX1U_Q_YMlVE_RpKMP9vTBQB9s6INb-uBV-uCOPrilD5bY0gdb-mBHnz8_f68SB1viPEPfP-wfvv8Yuo4coWKUL0IZZzypskIwzjQYz7wQsqAlFZXQGoaJiBmVukylKfynwPQ0l5YRVyqlZZWw52irPq2rFwgrEhcJ05ypSMYlVcKUgiwZAwMU9AihO4j43zFXrly96Zoyya_Fbwe97W6Z2VotN10ce3ByZ2xaIzIHot10294akMsHiRjM5TTavc1LvET3lv-bV2hrcdZUr9Fddb44mp_tORr-BVm3rlk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solution+for+high+order+differential+equations+using+a+hybrid+neural+network%E2%80%94Optimization+method&rft.jtitle=Applied+mathematics+and+computation&rft.au=Malek%2C+A.&rft.au=Shekari+Beidokhti%2C+R.&rft.date=2006-12-01&rft.issn=0096-3003&rft.volume=183&rft.issue=1&rft.spage=260&rft.epage=271&rft_id=info:doi/10.1016%2Fj.amc.2006.05.068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2006_05_068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon