Numerical solution for high order differential equations using a hybrid neural network—Optimization method
This paper reports a novel hybrid method based on optimization techniques and neural networks methods for the solution of high order ordinary differential equations. Here neural networks is considered as a part of large field called neural computing or soft computing. This means that we propose a ne...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 183; číslo 1; s. 260 - 271 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
Elsevier Inc
01.12.2006
Elsevier |
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper reports a novel hybrid method based on optimization techniques and neural networks methods for the solution of high order ordinary differential equations. Here neural networks is considered as a part of large field called neural computing or soft computing. This means that we propose a new solution method for the approximated solution of high order ordinary differential equations using innovative mathematical tools and neural-like systems of computation. This hybrid method can result in improved numerical methods for solving initial/boundary value problems, without using preassigned discretisation points. The mixture of feed forward neural networks and optimization techniques, based on Nelder–Mead method is used to introduce the close analytic form of the solution for the differential equation. Excellent test results are obtained for the solution of lower and higher order differential equations. The model finds approximation solution for the differential equation inside and outside the domain of consideration for the close enough neighborhood of initial/boundary points. Numerical examples are described to demonstrate the method. |
|---|---|
| AbstractList | This paper reports a novel hybrid method based on optimization techniques and neural networks methods for the solution of high order ordinary differential equations. Here neural networks is considered as a part of large field called neural computing or soft computing. This means that we propose a new solution method for the approximated solution of high order ordinary differential equations using innovative mathematical tools and neural-like systems of computation. This hybrid method can result in improved numerical methods for solving initial/boundary value problems, without using preassigned discretisation points. The mixture of feed forward neural networks and optimization techniques, based on Nelder–Mead method is used to introduce the close analytic form of the solution for the differential equation. Excellent test results are obtained for the solution of lower and higher order differential equations. The model finds approximation solution for the differential equation inside and outside the domain of consideration for the close enough neighborhood of initial/boundary points. Numerical examples are described to demonstrate the method. |
| Author | Malek, A. Shekari Beidokhti, R. |
| Author_xml | – sequence: 1 givenname: A. surname: Malek fullname: Malek, A. email: mala@modares.ac.ir – sequence: 2 givenname: R. surname: Shekari Beidokhti fullname: Shekari Beidokhti, R. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18402161$$DView record in Pascal Francis |
| BookMark | eNp9kM9u1DAQhy1UJLaFB-DmC8ekYztxEnFCFf-kil7gbHntcddLYi-2AyonHoIn7JPg7SIhcehppJnvG-n3OydnIQYk5CWDlgGTl_tWL6blALKFvgU5PiEbNg6i6WU3nZENwCQbASCekfOc9wAwSNZtyPxpXTB5o2ea47wWHwN1MdGdv93RmCwmar1zmDAUXyH8tuojlOmafbilmu7utslbGnBN9R6w_Ijp6_2v3zeH4hf_84GmC5ZdtM_JU6fnjC_-zgvy5d3bz1cfmuub9x-v3lw3RvChNLqbhh6n7SgG4XgPw3bUW275iKNzdQ1jJ7h2Vuq-m7jhXBxRywZjJLfYiwvy6vT3oHNN5pIOxmd1SH7R6U6xsQPOJKscO3EmxZwTun8IqGOtaq9qrepYq4Je1VqrM_znGF8eQpak_fyo-fpkYo3-3WNS2XgMBq1PaIqy0T9i_wGknpd1 |
| CODEN | AMHCBQ |
| CitedBy_id | crossref_primary_10_1155_2014_906376 crossref_primary_10_1080_0954898X_2021_1884762 crossref_primary_10_1007_s00500_020_05401_w crossref_primary_10_1016_j_asoc_2015_10_069 crossref_primary_10_3390_sym11020246 crossref_primary_10_1007_s40096_021_00424_2 crossref_primary_10_3390_computers12040082 crossref_primary_10_1007_s40314_021_01475_w crossref_primary_10_1016_j_cam_2016_04_002 crossref_primary_10_1007_s11831_024_10145_z crossref_primary_10_1002_nme_6828 crossref_primary_10_1016_j_neucom_2016_04_050 crossref_primary_10_1007_s13235_022_00477_5 crossref_primary_10_1007_s11401_021_0253_x crossref_primary_10_1002_gamm_202100006 crossref_primary_10_1155_2013_181895 crossref_primary_10_1007_s11600_025_01688_1 crossref_primary_10_1088_1402_4896_ad3f9a crossref_primary_10_1515_eng_2024_0030 crossref_primary_10_1007_s11831_023_09890_4 crossref_primary_10_1155_2015_561489 crossref_primary_10_1007_s40314_022_02098_5 crossref_primary_10_1016_j_asoc_2015_07_012 crossref_primary_10_1080_09540091_2019_1604627 crossref_primary_10_1007_s11063_022_10968_6 crossref_primary_10_1109_TNNLS_2020_2979706 crossref_primary_10_1145_3514228 crossref_primary_10_1371_journal_pone_0223476 crossref_primary_10_1007_s00366_022_01603_y crossref_primary_10_1007_s10614_022_10279_x crossref_primary_10_1016_j_amc_2015_05_122 crossref_primary_10_1080_09540091_2019_1605498 crossref_primary_10_1007_s12206_024_0624_9 crossref_primary_10_1155_2012_683483 crossref_primary_10_1007_s00366_021_01373_z crossref_primary_10_1016_j_amc_2014_08_085 crossref_primary_10_1016_j_asoc_2009_07_006 crossref_primary_10_1007_s11063_018_9911_8 crossref_primary_10_1088_1674_1056_ac9cb9 crossref_primary_10_3390_math11071643 crossref_primary_10_1108_GS_12_2022_0119 crossref_primary_10_1016_j_asoc_2013_04_013 crossref_primary_10_1007_s00521_015_2046_1 crossref_primary_10_1016_j_neucom_2010_12_026 crossref_primary_10_1016_j_neunet_2020_12_028 crossref_primary_10_1108_EC_08_2019_0387 crossref_primary_10_1186_s13662_018_1927_x crossref_primary_10_1007_s10614_020_10070_w crossref_primary_10_23939_cds2023_01_108 crossref_primary_10_1007_s00500_019_04267_x crossref_primary_10_1016_j_jcp_2022_111848 crossref_primary_10_1080_0954898X_2020_1807636 crossref_primary_10_1162_NECO_a_00858 crossref_primary_10_1007_s00521_011_0621_7 crossref_primary_10_1108_EC_11_2021_0683 crossref_primary_10_1080_0954898X_2021_2015005 crossref_primary_10_1109_TGRS_2023_3333663 crossref_primary_10_1007_s10231_013_0378_y crossref_primary_10_1016_j_camwa_2011_09_028 crossref_primary_10_1007_s11063_021_10508_8 crossref_primary_10_35414_akufemubid_1558289 crossref_primary_10_1007_s00521_016_2722_9 crossref_primary_10_1155_2017_7637651 crossref_primary_10_1007_s00366_022_01703_9 crossref_primary_10_1007_s00521_013_1526_4 crossref_primary_10_1016_j_jfranklin_2013_07_016 crossref_primary_10_1088_1757_899X_225_1_012040 crossref_primary_10_1109_TAP_2022_3186710 crossref_primary_10_1155_2020_6351279 crossref_primary_10_1371_journal_pone_0121728 crossref_primary_10_1007_s11063_016_9562_6 crossref_primary_10_1016_j_jcp_2023_112031 crossref_primary_10_1007_s10472_010_9222_x crossref_primary_10_1016_j_asoc_2012_03_041 crossref_primary_10_1155_2013_650467 crossref_primary_10_1007_s11071_017_3616_9 crossref_primary_10_3390_a12010010 crossref_primary_10_3390_computers12110226 crossref_primary_10_1016_j_neucom_2014_07_036 crossref_primary_10_1155_2015_196595 crossref_primary_10_1016_j_jcp_2021_110444 |
| Cites_doi | 10.1016/0021-9991(90)90007-N 10.1016/0895-7177(94)00160-X 10.1080/00207169808804651 10.1016/0895-7177(94)90095-7 10.1002/cnm.1640100303 10.1016/0893-6080(89)90020-8 10.1016/S0893-6080(97)00015-4 10.1093/imanum/15.4.523 10.1109/MASSP.1987.1165576 10.1137/S1052623496303470 10.1016/0893-6080(94)90052-3 10.1093/comjnl/7.4.308 10.1109/72.712178 10.1109/ICDSP.2002.1028323 |
| ContentType | Journal Article |
| Copyright | 2006 Elsevier Inc. 2007 INIST-CNRS |
| Copyright_xml | – notice: 2006 Elsevier Inc. – notice: 2007 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.amc.2006.05.068 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Applied Sciences |
| EISSN | 1873-5649 |
| EndPage | 271 |
| ExternalDocumentID | 18402161 10_1016_j_amc_2006_05_068 S0096300306005583 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c327t-a4975e9b8373f2507b8ab2d28e8ff9b808432afd6a5492c223b837d17cc62de53 |
| ISICitedReferencesCount | 164 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000243828600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 |
| IngestDate | Mon Jul 21 09:16:57 EDT 2025 Tue Nov 18 21:55:52 EST 2025 Sat Nov 29 06:12:10 EST 2025 Fri Feb 23 02:29:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Multidimensional optimization Nelder–Mead method Ordinary differential equations Feed forward artificial neural networks Mixed distribution Neural computation Differential equation Initial value problem Optimization method Numerical method Neural network Nelder-Mead method Computing Many-dimensional calculations Partial differential equation Discretization method Boundary value problem Applied mathematics Numerical solution Mathematical programming |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c327t-a4975e9b8373f2507b8ab2d28e8ff9b808432afd6a5492c223b837d17cc62de53 |
| PageCount | 12 |
| ParticipantIDs | pascalfrancis_primary_18402161 crossref_primary_10_1016_j_amc_2006_05_068 crossref_citationtrail_10_1016_j_amc_2006_05_068 elsevier_sciencedirect_doi_10_1016_j_amc_2006_05_068 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-12-01 |
| PublicationDateYYYYMMDD | 2006-12-01 |
| PublicationDate_xml | – month: 12 year: 2006 text: 2006-12-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2006 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Lambert (bib2) 1983 Minsky, Papert (bib13) 1969 Lagarias, Reeds, Wright, Wright (bib26) 1998; 9 Haykin (bib14) 1999 Picton (bib12) 2000 Lee, Kang (bib4) 1990; 91 Van der Smagt (bib23) 1994; 7 Likas, Karras, Lagaris (bib22) 1998; 67 Dissanayake, Phan-Thien (bib7) 1994; 10 Rao (bib24) 1989 Lagaris, Likas, Fotiadis (bib9) 1998; 9 Kincaid, Cheney (bib21) 2002 Stanley (bib16) 1990 Schalkoff (bib11) 1997 Gottlieb, Orszag (bib3) 1977; vol. 26 Hornick, Stinchcombe, white (bib18) 1989; 2 Khanna (bib15) 1990 Lapedes, Farber (bib19) 1988 K. Valasoulis, D.I. Fotiadis, I.E. Lagaris, A. Likas, Solving differential equations with neural networks: implementation on a DSP platform, in: Proceeding of 14th International Conference on Digital Signal Processing, Santorini, Greece, July 2002, pp. 1265–1268. Lippmann (bib17) 1987 Nelder, Mead (bib25) 1965; 7 Bernardi, Maday (bib28) 1991 Meade, Fernandez (bib5) 1994; 19 Stoer, Bulirsch (bib1) 1993 Malek, Phillips (bib27) 1995; 15 Bo-An Liu, B. Jammes, Solving ordinary differential equations by neural networks, in: Proceeding of 13th European Simulation Multi-Conference Modelling and Simulation: A Tool for the Next Millennium, Warsaw, Poland, June 1–4, 1999. Meade, Fernandez (bib6) 1994; 20 Mckeown, Stella, Hall (bib20) 1997; 10 Rao (10.1016/j.amc.2006.05.068_bib24) 1989 Picton (10.1016/j.amc.2006.05.068_bib12) 2000 Lapedes (10.1016/j.amc.2006.05.068_bib19) 1988 Kincaid (10.1016/j.amc.2006.05.068_bib21) 2002 Meade (10.1016/j.amc.2006.05.068_bib5) 1994; 19 Nelder (10.1016/j.amc.2006.05.068_bib25) 1965; 7 Lambert (10.1016/j.amc.2006.05.068_bib2) 1983 Lee (10.1016/j.amc.2006.05.068_bib4) 1990; 91 Meade (10.1016/j.amc.2006.05.068_bib6) 1994; 20 Lagarias (10.1016/j.amc.2006.05.068_bib26) 1998; 9 Minsky (10.1016/j.amc.2006.05.068_bib13) 1969 Mckeown (10.1016/j.amc.2006.05.068_bib20) 1997; 10 Hornick (10.1016/j.amc.2006.05.068_bib18) 1989; 2 Khanna (10.1016/j.amc.2006.05.068_bib15) 1990 Van der Smagt (10.1016/j.amc.2006.05.068_bib23) 1994; 7 10.1016/j.amc.2006.05.068_bib10 Lippmann (10.1016/j.amc.2006.05.068_bib17) 1987 Dissanayake (10.1016/j.amc.2006.05.068_bib7) 1994; 10 Likas (10.1016/j.amc.2006.05.068_bib22) 1998; 67 Stanley (10.1016/j.amc.2006.05.068_bib16) 1990 Bernardi (10.1016/j.amc.2006.05.068_bib28) 1991 Lagaris (10.1016/j.amc.2006.05.068_bib9) 1998; 9 Gottlieb (10.1016/j.amc.2006.05.068_bib3) 1977; vol. 26 Haykin (10.1016/j.amc.2006.05.068_bib14) 1999 Schalkoff (10.1016/j.amc.2006.05.068_bib11) 1997 Malek (10.1016/j.amc.2006.05.068_bib27) 1995; 15 10.1016/j.amc.2006.05.068_bib8 Stoer (10.1016/j.amc.2006.05.068_bib1) 1993 |
| References_xml | – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bib18 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks – volume: 15 start-page: 523 year: 1995 end-page: 553 ident: bib27 article-title: Pseudospectral collocation methods for fourth-order differential equations publication-title: IMA Journal of Numerical Analysis – year: 1969 ident: bib13 article-title: Perceptrons – start-page: 4 year: 1987 end-page: 22 ident: bib17 article-title: An introduction to computing with neural nets publication-title: IEEE ASSP Magazine – year: 1989 ident: bib24 article-title: Optimization: Theory and Applications – volume: 9 start-page: 987 year: 1998 end-page: 1000 ident: bib9 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Transactions on Neural Networks – year: 2000 ident: bib12 article-title: Neural Networks – year: 1991 ident: bib28 article-title: Some spectral approximations of one-dimensional fourth-order problems publication-title: Progress in Approximation Theory – year: 1993 ident: bib1 article-title: Introduction to Numerical Analysis – volume: vol. 26 year: 1977 ident: bib3 article-title: Numerical analysis of spectral methods: theory and applications publication-title: CBMS-NSF Regional Conference Series in Applied Mathematics – year: 1990 ident: bib16 article-title: Introduction to Neural Networks – volume: 7 start-page: 1 year: 1994 end-page: 11 ident: bib23 article-title: Minimization methods for training feedforward neural networks publication-title: Neural Networks – volume: 19 start-page: 1 year: 1994 end-page: 25 ident: bib5 article-title: The numerical solution of linear ordinary differential equations by feedforward neural networks publication-title: Mathematical and Computer Modelling – year: 1983 ident: bib2 article-title: Computational Methods in Ordinary Differential Equations – year: 1997 ident: bib11 article-title: Artificial Neural Networks – volume: 20 start-page: 19 year: 1994 end-page: 44 ident: bib6 article-title: Solution of nonlinear ordinary differential equations by feedforward neural networks publication-title: Mathematical and Computer Modelling – volume: 10 start-page: 195 year: 1994 end-page: 201 ident: bib7 article-title: Neural-network-based approximations for solving partial differential equations publication-title: Communications in Numerical Methods in Engineering – volume: 7 start-page: 308 year: 1965 end-page: 313 ident: bib25 article-title: A simplex method for function minimization publication-title: Computer Journal – volume: 10 start-page: 1455 year: 1997 end-page: 1463 ident: bib20 article-title: Some numerical aspects of the training problem for feed-forward neural nets publication-title: Neural Networks – start-page: 442 year: 1988 end-page: 456 ident: bib19 article-title: How neural nets work? publication-title: Neural Information Processing Systems – year: 1999 ident: bib14 article-title: Neural Networks: A Comprehensive Foundation – reference: K. Valasoulis, D.I. Fotiadis, I.E. Lagaris, A. Likas, Solving differential equations with neural networks: implementation on a DSP platform, in: Proceeding of 14th International Conference on Digital Signal Processing, Santorini, Greece, July 2002, pp. 1265–1268. – volume: 9 start-page: 112 year: 1998 end-page: 147 ident: bib26 article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions publication-title: SIAM Journal of Optimization – volume: 67 start-page: 33 year: 1998 end-page: 46 ident: bib22 article-title: Neural-network training and simulation using a multidimensional optimization system publication-title: International Journal of Computer Mathematics – year: 2002 ident: bib21 article-title: Numerical Analysis: Mathematics of Scientific Computing – reference: Bo-An Liu, B. Jammes, Solving ordinary differential equations by neural networks, in: Proceeding of 13th European Simulation Multi-Conference Modelling and Simulation: A Tool for the Next Millennium, Warsaw, Poland, June 1–4, 1999. – year: 1990 ident: bib15 article-title: Foundations of Neural Networks – volume: 91 start-page: 110 year: 1990 end-page: 131 ident: bib4 article-title: Neural algorithms for solving differential equations publication-title: Journal of Computational Physics – year: 1969 ident: 10.1016/j.amc.2006.05.068_bib13 – volume: 91 start-page: 110 year: 1990 ident: 10.1016/j.amc.2006.05.068_bib4 article-title: Neural algorithms for solving differential equations publication-title: Journal of Computational Physics doi: 10.1016/0021-9991(90)90007-N – volume: 20 start-page: 19 issue: 9 year: 1994 ident: 10.1016/j.amc.2006.05.068_bib6 article-title: Solution of nonlinear ordinary differential equations by feedforward neural networks publication-title: Mathematical and Computer Modelling doi: 10.1016/0895-7177(94)00160-X – volume: 67 start-page: 33 year: 1998 ident: 10.1016/j.amc.2006.05.068_bib22 article-title: Neural-network training and simulation using a multidimensional optimization system publication-title: International Journal of Computer Mathematics doi: 10.1080/00207169808804651 – volume: 19 start-page: 1 issue: 12 year: 1994 ident: 10.1016/j.amc.2006.05.068_bib5 article-title: The numerical solution of linear ordinary differential equations by feedforward neural networks publication-title: Mathematical and Computer Modelling doi: 10.1016/0895-7177(94)90095-7 – volume: 10 start-page: 195 year: 1994 ident: 10.1016/j.amc.2006.05.068_bib7 article-title: Neural-network-based approximations for solving partial differential equations publication-title: Communications in Numerical Methods in Engineering doi: 10.1002/cnm.1640100303 – volume: vol. 26 year: 1977 ident: 10.1016/j.amc.2006.05.068_bib3 article-title: Numerical analysis of spectral methods: theory and applications – year: 1997 ident: 10.1016/j.amc.2006.05.068_bib11 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.amc.2006.05.068_bib18 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – year: 2000 ident: 10.1016/j.amc.2006.05.068_bib12 – year: 2002 ident: 10.1016/j.amc.2006.05.068_bib21 – start-page: 442 year: 1988 ident: 10.1016/j.amc.2006.05.068_bib19 article-title: How neural nets work? – year: 1990 ident: 10.1016/j.amc.2006.05.068_bib16 – volume: 10 start-page: 1455 issue: 8 year: 1997 ident: 10.1016/j.amc.2006.05.068_bib20 article-title: Some numerical aspects of the training problem for feed-forward neural nets publication-title: Neural Networks doi: 10.1016/S0893-6080(97)00015-4 – volume: 15 start-page: 523 year: 1995 ident: 10.1016/j.amc.2006.05.068_bib27 article-title: Pseudospectral collocation methods for fourth-order differential equations publication-title: IMA Journal of Numerical Analysis doi: 10.1093/imanum/15.4.523 – year: 1993 ident: 10.1016/j.amc.2006.05.068_bib1 – start-page: 4 year: 1987 ident: 10.1016/j.amc.2006.05.068_bib17 article-title: An introduction to computing with neural nets publication-title: IEEE ASSP Magazine doi: 10.1109/MASSP.1987.1165576 – year: 1999 ident: 10.1016/j.amc.2006.05.068_bib14 – volume: 9 start-page: 112 issue: 1 year: 1998 ident: 10.1016/j.amc.2006.05.068_bib26 article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions publication-title: SIAM Journal of Optimization doi: 10.1137/S1052623496303470 – year: 1991 ident: 10.1016/j.amc.2006.05.068_bib28 article-title: Some spectral approximations of one-dimensional fourth-order problems – volume: 7 start-page: 1 issue: 1 year: 1994 ident: 10.1016/j.amc.2006.05.068_bib23 article-title: Minimization methods for training feedforward neural networks publication-title: Neural Networks doi: 10.1016/0893-6080(94)90052-3 – year: 1983 ident: 10.1016/j.amc.2006.05.068_bib2 – volume: 7 start-page: 308 year: 1965 ident: 10.1016/j.amc.2006.05.068_bib25 article-title: A simplex method for function minimization publication-title: Computer Journal doi: 10.1093/comjnl/7.4.308 – year: 1990 ident: 10.1016/j.amc.2006.05.068_bib15 – year: 1989 ident: 10.1016/j.amc.2006.05.068_bib24 – ident: 10.1016/j.amc.2006.05.068_bib8 – volume: 9 start-page: 987 issue: 5 year: 1998 ident: 10.1016/j.amc.2006.05.068_bib9 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.712178 – ident: 10.1016/j.amc.2006.05.068_bib10 doi: 10.1109/ICDSP.2002.1028323 |
| SSID | ssj0007614 |
| Score | 2.264494 |
| Snippet | This paper reports a novel hybrid method based on optimization techniques and neural networks methods for the solution of high order ordinary differential... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 260 |
| SubjectTerms | Applied sciences Computer science; control theory; systems Exact sciences and technology Feed forward artificial neural networks Global analysis, analysis on manifolds Language theory and syntactical analysis Mathematical analysis Mathematics Multidimensional optimization Nelder–Mead method Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Sciences and techniques of general use Theoretical computing Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
| Title | Numerical solution for high order differential equations using a hybrid neural network—Optimization method |
| URI | https://dx.doi.org/10.1016/j.amc.2006.05.068 |
| Volume | 183 |
| WOSCitedRecordID | wos000243828600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeqjgMIDRhMbMDkAyeiTEmcOAm3AkEtZR2CIvUWJbYjmNpQ1mYaJ_51nmM7H5sYcOASRa5TV_n9-vze8_tA6DmNCaPS6Q7baWD7lAo7Y8K3CfMdkTOaOZzXzSbC2SxaLOIPg8FPkwtzsQzLMrq8jNf_FWoYA7Bl6uw_wN18KQzAPYAOV4Adrn8F_KxShzBLy6xThxLKusRWXWizaYqyld5y8b3S0XBV7TbIrC8_ZBaXJStdwuelihO3a9_BKQiYlc7c1M2nu9qtUWlXTS3YjcmbW1f9M_-T0ftk2vOlfhon09HHifUqmbw5nY7nkzacsfVK9CM8TLpMV_TGMsjOIX3RS65xTAtS1WVA78meatNyTdwrz8PZcbZi-lwpOHZUm55-ae0rW14TiCjtW8-V5vOOF4JtNUQ7o0myeNds5iFV5eHNrzcH43WI4JVlf6fa3F1nG0C9UJ1SOurL_D7a1XYHHim-PEADUe6hexowrCX8Zg_dOWmxe4hWDZmwIRMGMmFJJlyTCXfJhBsy4ZpMOMOKTFiRCRsy4Ze4SyWsqPQIfX6bzF-Pbd2gw2bEC7d25sdhIOI8IiEpQJcO8yjLPe5FIioKGHYin3hZwWkm6wAy0ETlVO6GjFGPi4Dso2H5rRSPEc6LPOSx4GA-ub6gNHYZA12d0JjnAeHuAXLMu02Zrl4vm6gsUxOmeJYCHLKrKk2dIAU4DtCL5pG1Kt1y02TfAJZq3VPplClw7abHjnrgtgtpYh3-acITdLv9_zxFw-15JZ6hW-xi-3VzfqTp-AtkXK7Y |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solution+for+high+order+differential+equations+using+a+hybrid+neural+network-+%3A+Optimization+method&rft.jtitle=Applied+mathematics+and+computation&rft.au=MALEK%2C+A&rft.au=SHEKARI+BEIDOKHTI%2C+R&rft.date=2006-12-01&rft.pub=Elsevier&rft.issn=0096-3003&rft.volume=183&rft.issue=1&rft.spage=260&rft.epage=271&rft_id=info:doi/10.1016%2Fj.amc.2006.05.068&rft.externalDBID=n%2Fa&rft.externalDocID=18402161 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |