A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained optimization

This letter presents a scaled memoryless BFGS preconditioned conjugate gradient algorithm for solving unconstrained optimization problems. The basic idea is to combine the scaled memoryless BFGS method and the preconditioning technique in the frame of the conjugate gradient method. The preconditione...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics letters Vol. 20; no. 6; pp. 645 - 650
Main Author: Andrei, Neculai
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.06.2007
Elsevier
Subjects:
ISSN:0893-9659, 1873-5452
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This letter presents a scaled memoryless BFGS preconditioned conjugate gradient algorithm for solving unconstrained optimization problems. The basic idea is to combine the scaled memoryless BFGS method and the preconditioning technique in the frame of the conjugate gradient method. The preconditioner, which is also a scaled memoryless BFGS matrix, is reset when the Powell restart criterion holds. The parameter scaling the gradient is selected as the spectral gradient. Computational results for a set consisting of 750 test unconstrained optimization problems show that this new scaled conjugate gradient algorithm substantially outperforms known conjugate gradient methods such as the spectral conjugate gradient SCG of Birgin and Martínez [E. Birgin, J.M. Martínez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim. 43 (2001) 117–128] and the (classical) conjugate gradient of Polak and Ribière [E. Polak, G. Ribière, Note sur la convergence de méthodes de directions conjuguées, Revue Francaise Informat. Reserche Opérationnelle, 3e Année 16 (1969) 35–43], but subject to the CPU time metric it is outperformed by L-BFGS [D. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program. B 45 (1989) 503–528; J. Nocedal. http://www.ece.northwestern.edu/~nocedal/lbfgs.html].
AbstractList This letter presents a scaled memoryless BFGS preconditioned conjugate gradient algorithm for solving unconstrained optimization problems. The basic idea is to combine the scaled memoryless BFGS method and the preconditioning technique in the frame of the conjugate gradient method. The preconditioner, which is also a scaled memoryless BFGS matrix, is reset when the Powell restart criterion holds. The parameter scaling the gradient is selected as the spectral gradient. Computational results for a set consisting of 750 test unconstrained optimization problems show that this new scaled conjugate gradient algorithm substantially outperforms known conjugate gradient methods such as the spectral conjugate gradient SCG of Birgin and Martínez [E. Birgin, J.M. Martínez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim. 43 (2001) 117–128] and the (classical) conjugate gradient of Polak and Ribière [E. Polak, G. Ribière, Note sur la convergence de méthodes de directions conjuguées, Revue Francaise Informat. Reserche Opérationnelle, 3e Année 16 (1969) 35–43], but subject to the CPU time metric it is outperformed by L-BFGS [D. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program. B 45 (1989) 503–528; J. Nocedal. http://www.ece.northwestern.edu/~nocedal/lbfgs.html].
Author Andrei, Neculai
Author_xml – sequence: 1
  givenname: Neculai
  surname: Andrei
  fullname: Andrei, Neculai
  email: nandrei@ici.ro
  organization: Research Institute for Informatics, Center for Advanced Modeling and Optimization, 8-10, Averescu Avenue, Bucharest 1, Romania
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18658063$$DView record in Pascal Francis
BookMark eNp9kM1KAzEUhYMo2FYfwN1sXM6YTJpMgqtabBUKLlRwF9IkUzPMH0kq6NObWEFwUbhwb8j5DpwzBaf90BsArhAsEET0pilk1xYlhLRIg8gJmCBW4ZzMSXkKJpBxnHNK-DmYet9ACDHHbALeFplXsjU6u1utn7PRGTX02gYb7XUW72a_k8FkOye1NX3IZLsbnA3vXVYPLtv3UeKDkzbJhzHYzn7JRF-As1q23lz-7hl4Xd2_LB_yzdP6cbnY5AqXVcglNnSLtxhSLOcwvqBGlBmK5xqVEjNj8FZyTWBVMS4JQbSCHJdEGw7jp8YzcH3wHWUKUjvZK-vF6Gwn3adAjBIWzaMOHXTKDd47U_9JoEgVikbECkWqUKRBJDLVP0bZ8JMuJW6PkrcH0sToH9Y44VWsTxltY8NB6MEeob8BCH2OTA
CitedBy_id crossref_primary_10_1007_s10957_019_01527_6
crossref_primary_10_1007_s11012_019_01006_2
crossref_primary_10_3390_nano15161289
crossref_primary_10_1007_s10957_008_9505_0
crossref_primary_10_1007_s10589_013_9558_3
crossref_primary_10_1155_2023_9945581
crossref_primary_10_1016_j_ejor_2009_11_030
crossref_primary_10_1155_2015_961487
crossref_primary_10_1007_s11770_020_0844_4
crossref_primary_10_1007_s10288_013_0233_4
crossref_primary_10_1007_s10957_015_0724_x
crossref_primary_10_1155_2021_9919595
crossref_primary_10_1002_eng2_12968
crossref_primary_10_1080_03610926_2012_661510
crossref_primary_10_1016_j_jmgm_2016_04_002
crossref_primary_10_1007_s10589_023_00508_w
crossref_primary_10_1016_j_cmpb_2017_04_012
crossref_primary_10_1016_j_matcom_2023_07_026
crossref_primary_10_1016_j_camwa_2018_10_002
crossref_primary_10_1007_s11665_015_1383_7
crossref_primary_10_1007_s11590_012_0462_z
crossref_primary_10_1007_s11075_015_0053_z
crossref_primary_10_1080_10556788_2024_2372668
crossref_primary_10_1007_s11075_007_9152_9
crossref_primary_10_1155_2013_286486
crossref_primary_10_1080_02331934_2025_2547719
crossref_primary_10_1016_j_aml_2010_01_010
crossref_primary_10_1016_j_cam_2013_11_001
crossref_primary_10_1007_s11075_019_00658_1
crossref_primary_10_1016_j_cam_2021_113582
crossref_primary_10_1080_0305215X_2025_2475004
crossref_primary_10_1007_s40995_020_01012_0
crossref_primary_10_1080_02522667_2009_10699885
crossref_primary_10_1109_ACCESS_2021_3081570
crossref_primary_10_1007_s10288_020_00432_3
crossref_primary_10_1080_10556788_2018_1457152
crossref_primary_10_1016_j_amc_2009_03_020
crossref_primary_10_1155_2013_517452
crossref_primary_10_1016_j_cam_2022_114630
crossref_primary_10_1080_10556788_2016_1225213
crossref_primary_10_1007_s12190_022_01713_2
crossref_primary_10_1016_j_cam_2010_01_052
crossref_primary_10_1080_10556788_2010_501379
crossref_primary_10_1016_j_cam_2008_12_024
crossref_primary_10_1108_09615531311301272
Cites_doi 10.1137/1013035
10.1287/moor.3.3.244
10.1137/0715085
10.1137/1011036
10.1145/200979.201043
10.1007/s002450010019
10.1007/s00245-001-0003-0
10.1093/comjnl/7.2.149
10.6028/jres.049.044
10.1007/BF01593790
10.1007/BF01589116
ContentType Journal Article
Copyright 2006 Elsevier Ltd
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Ltd
– notice: 2007 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.aml.2006.06.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5452
EndPage 650
ExternalDocumentID 18658063
10_1016_j_aml_2006_06_015
S0893965906002382
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-a3e6b3b3063a40a3e0d168e634d12a38ee3ba9d507789a5516709325de908eed3
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000246062200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-9659
IngestDate Mon Jul 21 09:15:37 EDT 2025
Sat Nov 29 07:11:20 EST 2025
Tue Nov 18 21:00:26 EST 2025
Fri Feb 23 02:17:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Conjugate gradient method
Unconstrained optimization
BFGS preconditioning
Frame
Gradient
Spectral method
Program
Memory
Optimization method
Algorithm
Direction
Convergence
Letter
Applied mathematics
Problem solving
Metric
Large scale
Limit
Preconditioning
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-a3e6b3b3063a40a3e0d168e634d12a38ee3ba9d507789a5516709325de908eed3
OpenAccessLink https://dx.doi.org/10.1016/j.aml.2006.06.015
PageCount 6
ParticipantIDs pascalfrancis_primary_18658063
crossref_primary_10_1016_j_aml_2006_06_015
crossref_citationtrail_10_1016_j_aml_2006_06_015
elsevier_sciencedirect_doi_10_1016_j_aml_2006_06_015
PublicationCentury 2000
PublicationDate 2007-06-01
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied mathematics letters
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Nocedal (b7)
Wolfe (b14) 1971; 13
Powell (b10) 1977; 12
Shanno (b11) 1978; 3
Birgin, Martínez (b1) 2001; 43
Polak, Ribière (b9) 1969; 16
Fletcher, Reeves (b4) 1964; 7
Shanno (b12) 1978; 15
J.M. Perry, A class of conjugate gradient algorithms with a two step variable metric memory, Discussion paper 269, Center for Mathematical Studies in Economics and Management Science, Northwestern University, 1977
Wolfe (b13) 1969; 11
Hestenes, Stiefel (b5) 1952; 48
Bongartz, Conn, Gould, Toint (b2) 1995; 21
Dai, Liao (b3) 2001; 43
Liu, Nocedal (b6) 1989; 45
Birgin (10.1016/j.aml.2006.06.015_b1) 2001; 43
10.1016/j.aml.2006.06.015_b8
Wolfe (10.1016/j.aml.2006.06.015_b13) 1969; 11
Fletcher (10.1016/j.aml.2006.06.015_b4) 1964; 7
Shanno (10.1016/j.aml.2006.06.015_b11) 1978; 3
Wolfe (10.1016/j.aml.2006.06.015_b14) 1971; 13
Polak (10.1016/j.aml.2006.06.015_b9) 1969; 16
Liu (10.1016/j.aml.2006.06.015_b6) 1989; 45
Hestenes (10.1016/j.aml.2006.06.015_b5) 1952; 48
Bongartz (10.1016/j.aml.2006.06.015_b2) 1995; 21
Dai (10.1016/j.aml.2006.06.015_b3) 2001; 43
Powell (10.1016/j.aml.2006.06.015_b10) 1977; 12
Nocedal (10.1016/j.aml.2006.06.015_b7)
Shanno (10.1016/j.aml.2006.06.015_b12) 1978; 15
References_xml – volume: 3
  start-page: 244
  year: 1978
  end-page: 256
  ident: b11
  article-title: Conjugate gradient methods with inexact searches
  publication-title: Math. Oper. Res.
– volume: 15
  start-page: 1247
  year: 1978
  end-page: 1257
  ident: b12
  article-title: On the convergence of a new conjugate gradient algorithm
  publication-title: SIAM J. Numer. Anal.
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: b6
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program. B
– volume: 11
  start-page: 226
  year: 1969
  end-page: 235
  ident: b13
  article-title: Convergence conditions for ascent methods
  publication-title: SIAM Rev.
– volume: 7
  start-page: 149
  year: 1964
  end-page: 154
  ident: b4
  article-title: Function minimization by conjugate gradients
  publication-title: Comput. J.
– volume: 48
  start-page: 409
  year: 1952
  end-page: 436
  ident: b5
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J. Res. Nat. Bur. Stan. Sec. B
– volume: 43
  start-page: 117
  year: 2001
  end-page: 128
  ident: b1
  article-title: A spectral conjugate gradient method for unconstrained optimization
  publication-title: Appl. Math. Optim.
– volume: 21
  start-page: 123
  year: 1995
  end-page: 160
  ident: b2
  article-title: CUTE: Constrained and unconstrained testing environments
  publication-title: ACM Trans. Math. Software
– ident: b7
– reference: J.M. Perry, A class of conjugate gradient algorithms with a two step variable metric memory, Discussion paper 269, Center for Mathematical Studies in Economics and Management Science, Northwestern University, 1977
– volume: 43
  start-page: 87
  year: 2001
  end-page: 101
  ident: b3
  article-title: New conjugate conditions and related nonlinear conjugate gradient methods
  publication-title: Appl. Math. Optim.
– volume: 16
  start-page: 35
  year: 1969
  end-page: 43
  ident: b9
  article-title: Note sur la convergence de méthodes de directions conjuguées
  publication-title: Revue Francaise Informat. Reserche Opérationnelle, 3e Année
– volume: 12
  start-page: 241
  year: 1977
  end-page: 254
  ident: b10
  article-title: Restart procedures for the conjugate gradient method
  publication-title: Math. Program.
– volume: 13
  start-page: 185
  year: 1971
  end-page: 188
  ident: b14
  article-title: Convergence conditions for ascent methods II: Some corrections
  publication-title: SIAM Rev.
– volume: 13
  start-page: 185
  year: 1971
  ident: 10.1016/j.aml.2006.06.015_b14
  article-title: Convergence conditions for ascent methods II: Some corrections
  publication-title: SIAM Rev.
  doi: 10.1137/1013035
– ident: 10.1016/j.aml.2006.06.015_b7
– volume: 3
  start-page: 244
  year: 1978
  ident: 10.1016/j.aml.2006.06.015_b11
  article-title: Conjugate gradient methods with inexact searches
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.3.3.244
– volume: 16
  start-page: 35
  year: 1969
  ident: 10.1016/j.aml.2006.06.015_b9
  article-title: Note sur la convergence de méthodes de directions conjuguées
  publication-title: Revue Francaise Informat. Reserche Opérationnelle, 3e Année
– volume: 15
  start-page: 1247
  year: 1978
  ident: 10.1016/j.aml.2006.06.015_b12
  article-title: On the convergence of a new conjugate gradient algorithm
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0715085
– volume: 11
  start-page: 226
  year: 1969
  ident: 10.1016/j.aml.2006.06.015_b13
  article-title: Convergence conditions for ascent methods
  publication-title: SIAM Rev.
  doi: 10.1137/1011036
– volume: 21
  start-page: 123
  year: 1995
  ident: 10.1016/j.aml.2006.06.015_b2
  article-title: CUTE: Constrained and unconstrained testing environments
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/200979.201043
– volume: 43
  start-page: 87
  year: 2001
  ident: 10.1016/j.aml.2006.06.015_b3
  article-title: New conjugate conditions and related nonlinear conjugate gradient methods
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s002450010019
– ident: 10.1016/j.aml.2006.06.015_b8
– volume: 43
  start-page: 117
  year: 2001
  ident: 10.1016/j.aml.2006.06.015_b1
  article-title: A spectral conjugate gradient method for unconstrained optimization
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-001-0003-0
– volume: 7
  start-page: 149
  year: 1964
  ident: 10.1016/j.aml.2006.06.015_b4
  article-title: Function minimization by conjugate gradients
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.2.149
– volume: 48
  start-page: 409
  year: 1952
  ident: 10.1016/j.aml.2006.06.015_b5
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J. Res. Nat. Bur. Stan. Sec. B
  doi: 10.6028/jres.049.044
– volume: 12
  start-page: 241
  year: 1977
  ident: 10.1016/j.aml.2006.06.015_b10
  article-title: Restart procedures for the conjugate gradient method
  publication-title: Math. Program.
  doi: 10.1007/BF01593790
– volume: 45
  start-page: 503
  year: 1989
  ident: 10.1016/j.aml.2006.06.015_b6
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program. B
  doi: 10.1007/BF01589116
SSID ssj0003938
Score 2.089182
Snippet This letter presents a scaled memoryless BFGS preconditioned conjugate gradient algorithm for solving unconstrained optimization problems. The basic idea is to...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 645
SubjectTerms BFGS preconditioning
Conjugate gradient method
Exact sciences and technology
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Sciences and techniques of general use
Unconstrained optimization
Title A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained optimization
URI https://dx.doi.org/10.1016/j.aml.2006.06.015
Volume 20
WOSCitedRecordID wos000246062200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5452
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0003938
  issn: 0893-9659
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdQxwMITXxqYzD5gSeqoMRO7PixoI2BRIW0IfUtcmN3tGqzqu3Q_nzubOcLtAmQkJIoSfPh-n65-9k-3xHyxvAMrV4aAXx0lDLDIsWsibSVcgoWLJ2J0iWbkONxPpmoryFd6talE5BVld_cqPV_FTWcA2Hj1Nm_EHfzUDgB-yB02ILYYftHgh8Nt1DvwCPfn348xxgA0OI1PiIRzmCrFtfYcza83DhnL-zxvbzazHffV87jEMwcMkZMHAGXX4FCWYWZml0aW3PXVRP0dTtcuolBDUV3npLOVWDs8u_Oe_0LsvWD8p1e9cSX1svI6SbFI4xF6M2I1525RD-LrKdcWdwBUVdTCh9FMhhd4aPP_qbPfdfC4p1eLcPAESxJ1hqvxqXwHIuEJYqF4yFglveYzFQ-IHujTyeTz4195srlN2_-Qj3W7bz-fnnRbWzl0VqjLGc--UmHkVw8JvuhKUFHHgJPyD1bPSUPv7QieUYmI-rBQBEMtA8G2oCB1mCgDRgogIH2wEC7YHhOvp2eXHw4i0IujajkTO4iza2Y8ik0ELlOYziKTSJyK3hqEqZ5bi2famWgdSBzpXH0VMZA7TNjVQw_Gv6CDCoo2wGh1kCrkpczLiyHnUSXqpScS1hjyUp2SOK6zooyBJrHki6L2qNwUUA1YwJUUeCSZIfkbXPL2kdZuevitBZEEWiip38FoOau2457QmtflAMLh3p5-W_PPSIP2s_mFRnsNtf2Nblf_tjNt5vjAL6fNQOXtQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+scaled+BFGS+preconditioned+conjugate+gradient+algorithm+for+unconstrained+optimization&rft.jtitle=Applied+mathematics+letters&rft.au=Andrei%2C+Neculai&rft.date=2007-06-01&rft.pub=Elsevier+Ltd&rft.issn=0893-9659&rft.eissn=1873-5452&rft.volume=20&rft.issue=6&rft.spage=645&rft.epage=650&rft_id=info:doi/10.1016%2Fj.aml.2006.06.015&rft.externalDocID=S0893965906002382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-9659&client=summon