Cones of closed alternating walks and trails

Consider a graph whose edges have been colored red and blue. Assign a nonnegative real weight to every edge so that at every vertex, the sum of the weights of the incident red edges equals the sum of the weights of the incident blue edges. The set of all such assignments forms a convex polyhedral co...

Full description

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications Vol. 423; no. 2; pp. 351 - 365
Main Authors: Bhattacharya, Amitava, Peled, Uri N., Srinivasan, Murali K.
Format: Journal Article
Language:English
Published: New York, NY Elsevier Inc 01.06.2007
Elsevier Science
Subjects:
ISSN:0024-3795
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Consider a graph whose edges have been colored red and blue. Assign a nonnegative real weight to every edge so that at every vertex, the sum of the weights of the incident red edges equals the sum of the weights of the incident blue edges. The set of all such assignments forms a convex polyhedral cone in the edge space, called the alternating cone. The integral (respectively, {0, 1}) vectors in the alternating cone are sums of characteristic vectors of closed alternating walks (respectively, trails). We study the basic properties of the alternating cone, determine its dimension and extreme rays, and relate its dimension to the majorization order on degree sequences. We consider whether the alternating cone has integral vectors in a given box, and use residual graph techniques to reduce this problem to the one of searching for an alternating trail connecting two given vertices. The latter problem, called alternating reachability, is solved in a companion paper along with related results.
AbstractList Consider a graph whose edges have been colored red and blue. Assign a nonnegative real weight to every edge so that at every vertex, the sum of the weights of the incident red edges equals the sum of the weights of the incident blue edges. The set of all such assignments forms a convex polyhedral cone in the edge space, called the alternating cone. The integral (respectively, {0, 1}) vectors in the alternating cone are sums of characteristic vectors of closed alternating walks (respectively, trails). We study the basic properties of the alternating cone, determine its dimension and extreme rays, and relate its dimension to the majorization order on degree sequences. We consider whether the alternating cone has integral vectors in a given box, and use residual graph techniques to reduce this problem to the one of searching for an alternating trail connecting two given vertices. The latter problem, called alternating reachability, is solved in a companion paper along with related results.
Author Peled, Uri N.
Srinivasan, Murali K.
Bhattacharya, Amitava
Author_xml – sequence: 1
  givenname: Amitava
  surname: Bhattacharya
  fullname: Bhattacharya, Amitava
  email: amitava@math.uic.edu
  organization: Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7045, USA
– sequence: 2
  givenname: Uri N.
  surname: Peled
  fullname: Peled, Uri N.
  email: uripeled@uic.edu
  organization: Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7045, USA
– sequence: 3
  givenname: Murali K.
  surname: Srinivasan
  fullname: Srinivasan, Murali K.
  email: mks@math.iitb.ac.in
  organization: Department of Mathematics, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18701606$$DView record in Pascal Francis
BookMark eNp9kE1LxDAURbMYwZnRH-CuG3e2viSdxuBKil8w4EbXIU1eJTWmQ1IU_70ZKwguBh7czT0Pzl2RRRgDEnJGoaJAm8uh8lpXDEBUQPPxBVkCsLrkQm6OySqlAQBqAWxJLtrMpmLsC-PHhLbQfsIY9OTCa_Gp_VsqdLDFFLXz6YQc9donPP3NNXm5u31uH8rt0_1je7MtDWdiKqUVpjNgN6zJybCuayF7ISRKzTkY5KyTlkuWo2saqLsGJRpGqUCZUb4m5_PfnU5G-z7qYFxSu-jedfxS9EpkTWhyj849E8eUIvZ_FVD7KdSg8hRqP4UCmo9nRvxjjJuy7hh-HA-S1zOJWf3DYVTJOAwGrYtoJmVHd4D-Bjfge38
CODEN LAAPAW
CitedBy_id crossref_primary_10_1016_j_laa_2009_02_029
crossref_primary_10_1016_j_tcs_2017_01_007
Cites_doi 10.1016/0024-3795(94)90349-2
10.1016/0024-3795(94)90407-3
ContentType Journal Article
Copyright 2007 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.laa.2007.01.013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EndPage 365
ExternalDocumentID 18701606
10_1016_j_laa_2007_01_013
S002437950700033X
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXKI
AAXUO
ABAOU
ABDPE
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
T9H
TN5
TWZ
WH7
WUQ
XPP
YQT
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AETEA
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-9d7cbc0d526cbc2e44479f779e9a330ce32b9d3922b9b6604b6e9ec2117e97cb3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000246549400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-3795
IngestDate Mon Jul 21 09:16:08 EDT 2025
Sat Nov 29 05:08:46 EST 2025
Tue Nov 18 20:51:21 EST 2025
Tue Dec 03 03:44:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Alternating walks and trails
05C70
90C27
90C57
Colored graphs
Cone
Vertex(graph)
Graph theory
05C70; 90C27; 90C57
Combinatorial optimization
Reachability
Polyhedron
Upper bound
Extreme ray
Graph colouring
Colored graphs; Alternating walks and trails
Summation
Mathematical programming
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-9d7cbc0d526cbc2e44479f779e9a330ce32b9d3922b9b6604b6e9ec2117e97cb3
OpenAccessLink https://dx.doi.org/10.1016/j.laa.2007.01.013
PageCount 15
ParticipantIDs pascalfrancis_primary_18701606
crossref_primary_10_1016_j_laa_2007_01_013
crossref_citationtrail_10_1016_j_laa_2007_01_013
elsevier_sciencedirect_doi_10_1016_j_laa_2007_01_013
PublicationCentury 2000
PublicationDate 2007-06-01
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Linear algebra and its applications
PublicationYear 2007
Publisher Elsevier Inc
Elsevier Science
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science
References A. Bhattacharya, U.N. Peled, M.K. Srinivasan, Alternating reachability
Arikati, Peled (bib1) 1994; 199
Grossman, Kulkarni, Schochetman (bib4) 1994; 212/213
Marshall, Olkin (bib7) 1979
Ruch, Gutman (bib8) 1979; 4
Ford, Fulkerson (bib3) 1962
Hammer, Ibaraki, Peled (bib5) 1981; vol. 11
Mahadev, Peled (bib6) 1995; vol. 56
Seymour (bib9) 1979
.
Ruch (10.1016/j.laa.2007.01.013_bib8) 1979; 4
Mahadev (10.1016/j.laa.2007.01.013_bib6) 1995; vol. 56
Ford (10.1016/j.laa.2007.01.013_bib3) 1962
Arikati (10.1016/j.laa.2007.01.013_bib1) 1994; 199
Hammer (10.1016/j.laa.2007.01.013_bib5) 1981; vol. 11
Seymour (10.1016/j.laa.2007.01.013_bib9) 1979
Marshall (10.1016/j.laa.2007.01.013_bib7) 1979
10.1016/j.laa.2007.01.013_bib2
Grossman (10.1016/j.laa.2007.01.013_bib4) 1994; 212/213
References_xml – year: 1962
  ident: bib3
  article-title: Flows in Networks
– start-page: 341
  year: 1979
  end-page: 355
  ident: bib9
  article-title: Sums of circuits
  publication-title: Graph Theory and Related Topics
– volume: vol. 11
  start-page: 125
  year: 1981
  end-page: 145
  ident: bib5
  article-title: Threshold numbers and threshold completions
  publication-title: Studies in Graphs and Discrete Programming
– volume: 4
  start-page: 286
  year: 1979
  end-page: 295
  ident: bib8
  article-title: The branching extent of graphs
  publication-title: J. Combin. Inform. System Sci.
– volume: 199
  start-page: 179
  year: 1994
  end-page: 211
  ident: bib1
  article-title: Degree sequences and majorization
  publication-title: Linear Algebra Appl.
– reference: A. Bhattacharya, U.N. Peled, M.K. Srinivasan, Alternating reachability,
– volume: 212/213
  start-page: 289
  year: 1994
  end-page: 308
  ident: bib4
  article-title: Algebraic graph theory without orientation
  publication-title: Linear Algebra Appl.
– volume: vol. 56
  year: 1995
  ident: bib6
  article-title: Threshold graphs and related topics
  publication-title: Annals Discrete Mathematics
– reference: .
– year: 1979
  ident: bib7
  article-title: Inequalities: Theory of Majorization and its Applications
– volume: vol. 11
  start-page: 125
  year: 1981
  ident: 10.1016/j.laa.2007.01.013_bib5
  article-title: Threshold numbers and threshold completions
– volume: 199
  start-page: 179
  year: 1994
  ident: 10.1016/j.laa.2007.01.013_bib1
  article-title: Degree sequences and majorization
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(94)90349-2
– volume: 212/213
  start-page: 289
  year: 1994
  ident: 10.1016/j.laa.2007.01.013_bib4
  article-title: Algebraic graph theory without orientation
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(94)90407-3
– start-page: 341
  year: 1979
  ident: 10.1016/j.laa.2007.01.013_bib9
  article-title: Sums of circuits
– volume: vol. 56
  year: 1995
  ident: 10.1016/j.laa.2007.01.013_bib6
  article-title: Threshold graphs and related topics
– year: 1979
  ident: 10.1016/j.laa.2007.01.013_bib7
– ident: 10.1016/j.laa.2007.01.013_bib2
– year: 1962
  ident: 10.1016/j.laa.2007.01.013_bib3
– volume: 4
  start-page: 286
  year: 1979
  ident: 10.1016/j.laa.2007.01.013_bib8
  article-title: The branching extent of graphs
  publication-title: J. Combin. Inform. System Sci.
SSID ssj0004702
Score 1.7862326
Snippet Consider a graph whose edges have been colored red and blue. Assign a nonnegative real weight to every edge so that at every vertex, the sum of the weights of...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 351
SubjectTerms Algebra
Alternating walks and trails
Applied sciences
Colored graphs
Combinatorics
Combinatorics. Ordered structures
Exact sciences and technology
Flows in networks. Combinatorial problems
Graph theory
Linear and multilinear algebra, matrix theory
Mathematics
Operational research and scientific management
Operational research. Management science
Sciences and techniques of general use
Title Cones of closed alternating walks and trails
URI https://dx.doi.org/10.1016/j.laa.2007.01.013
Volume 423
WOSCitedRecordID wos000246549400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  issn: 0024-3795
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 20180131
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004702
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3_S9wwFA9O98PGEPdF5uakP-ynuR65JG2aH0Ucm8NjoML9VpJcwk7reVy7w_33e2nSL7eh6EAobSlNG_JeXt63fB5CHxkXMrPZMCY6YzEjMomVTnFMMpheibFWUlUXm-CjUTYeix8BnqCsywnw2Sy7uRHzRyU1PANiu62zDyB3-1F4APdAdDgD2eF8L8IfOvT9Olu8uC5Bnazj4c7n57yusrj0oMyuNERR9lVTsEodqI-r-wEWdBtU6Ee4W9v9p6wq6TZs_fZu2atpJZeyE7OFd6GeL6b7o0HrxHHBoqUsvcv1xOF9TPe_D1b8DrzLj_LOsGZDzEq-plvyQWb5upmNgGV-R3HgJNITlzSAzfqVl_qqEf8Ide9fuBgUUgbMySEctFvB2rzC0wCwCEquM_bo-AnaIDwRILE3Dr4djY-7LbMcByB5398m4F2n_v31o9tUlhdzWcJEsr4CSk8tOdtCm8GeiA48H7xEa2b2Cj0_acF4y9foc80R0bWNPEdEPY6Iao6IgNiR54g36PzL0dnh1zgUyYg1JbyKxYRrpfEkISlciWEMpp_lXBghKcXaUKLEBLRguKg0xUylRhgNdj83AprSbbQ-g268RRHDmbFYJVQnkjELknvCpVAOFc1iItQOws045DogyNd9y5tUwYschs5VNuU5HsJBd9Cntsncw6fc9TJrBjcP-p_X63LghLua7a0QovsRrEVDMNDf_d9336NnHd_vovVq8ct8QE_1spqWi73AUH8Auh2HbA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cones+of+closed+alternating+walks+and+trails&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Bhattacharya%2C+Amitava&rft.au=Peled%2C+Uri+N.&rft.au=Srinivasan%2C+Murali+K.&rft.date=2007-06-01&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.volume=423&rft.issue=2&rft.spage=351&rft.epage=365&rft_id=info:doi/10.1016%2Fj.laa.2007.01.013&rft.externalDocID=S002437950700033X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon