Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications

In this paper, we establish the formulas of the maximal and minimal ranks of the quaternion matrix expression C 4 - A 4 XB 4 where X is a variant quaternion matrix subject to quaternion matrix equations A 1 X = C 1 , XB 2 = C 2 , A 3 XB 3 = C 3 . As applications, we give a new necessary and sufficie...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation Vol. 195; no. 2; pp. 733 - 744
Main Authors: Wang, Qing-Wen, Yu, Shao-Wen, Lin, Chun-Yan
Format: Journal Article
Language:English
Published: New York, NY Elsevier Inc 01.02.2008
Elsevier
Subjects:
ISSN:0096-3003, 1873-5649
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we establish the formulas of the maximal and minimal ranks of the quaternion matrix expression C 4 - A 4 XB 4 where X is a variant quaternion matrix subject to quaternion matrix equations A 1 X = C 1 , XB 2 = C 2 , A 3 XB 3 = C 3 . As applications, we give a new necessary and sufficient condition for the existence of solutions to the system of matrix equations A 1 X = C 1 , XB 2 = C 2 , A 3 XB 3 = C 3 , A 4 XB 4 = C 4 , which was investigated by Wang [Q.W. Wang, A system of four matrix equations over von Neumann regular rings and its applications, Acta Math. Sin., 21(2) (2005) 323–334], by rank equalities. In addition, extremal ranks of the generalized Schur complement D - CA - B with respect to an inner inverse A − of A, which is a common solution to quaternion matrix equations A 1 X = C 1 , XB 2 = C 2 , are also considered. Some previous known results can be viewed as special cases of the results of this paper.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2007.05.018