A Riemann–Hilbert problem for skew-orthogonal polynomials

We find a local ( d + 1 ) × ( d + 1 ) Riemann–Hilbert problem characterizing the skew-orthogonal polynomials associated to the partition function of orthogonal ensembles of random matrices with a potential function of degree d. Our Riemann–Hilbert problem is similar to a local d × d Riemann–Hilbert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics Jg. 215; H. 1; S. 230 - 241
1. Verfasser: Pierce, Virgil U.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 15.05.2008
Elsevier
Schlagworte:
ISSN:0377-0427, 1879-1778
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We find a local ( d + 1 ) × ( d + 1 ) Riemann–Hilbert problem characterizing the skew-orthogonal polynomials associated to the partition function of orthogonal ensembles of random matrices with a potential function of degree d. Our Riemann–Hilbert problem is similar to a local d × d Riemann–Hilbert problem found by Kuijlaars and McLaughlin characterizing the bi-orthogonal polynomials. This gives more motivation for finding methods to compute asymptotics of high order Riemann–Hilbert problems, and brings us closer to finding full asymptotic expansions of the skew-orthogonal polynomials.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2007.04.006