A Riemann–Hilbert problem for skew-orthogonal polynomials
We find a local ( d + 1 ) × ( d + 1 ) Riemann–Hilbert problem characterizing the skew-orthogonal polynomials associated to the partition function of orthogonal ensembles of random matrices with a potential function of degree d. Our Riemann–Hilbert problem is similar to a local d × d Riemann–Hilbert...
Uloženo v:
| Vydáno v: | Journal of computational and applied mathematics Ročník 215; číslo 1; s. 230 - 241 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
15.05.2008
Elsevier |
| Témata: | |
| ISSN: | 0377-0427, 1879-1778 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We find a local
(
d
+
1
)
×
(
d
+
1
)
Riemann–Hilbert problem characterizing the skew-orthogonal polynomials associated to the partition function of orthogonal ensembles of random matrices with a potential function of degree
d. Our Riemann–Hilbert problem is similar to a local
d
×
d
Riemann–Hilbert problem found by Kuijlaars and McLaughlin characterizing the bi-orthogonal polynomials. This gives more motivation for finding methods to compute asymptotics of high order Riemann–Hilbert problems, and brings us closer to finding full asymptotic expansions of the skew-orthogonal polynomials. |
|---|---|
| ISSN: | 0377-0427 1879-1778 |
| DOI: | 10.1016/j.cam.2007.04.006 |