Adaptive differential evolution algorithm for multiobjective optimization problems

In this paper, a new adaptive differential evolution algorithm (ADEA) is proposed for multiobjective optimization problems. In ADEA, the variable parameter F based on the number of the current Pareto-front and the diversity of the current solutions is given for adjusting search size in every generat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 201; číslo 1; s. 431 - 440
Hlavní autoři: Qian, Weiyi, li, Ajun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 15.07.2008
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a new adaptive differential evolution algorithm (ADEA) is proposed for multiobjective optimization problems. In ADEA, the variable parameter F based on the number of the current Pareto-front and the diversity of the current solutions is given for adjusting search size in every generation to find Pareto solutions in mutation operator, and the select operator combines the advantages of DE with the mechanisms of Pareto-based ranking and crowding distance sorting. ADEA is implemented on five classical multiobjective problems, the results illustrate that ADEA efficiently achieves two goals of multiobjective optimization problems: find the solutions converge to the true Pareto-front and uniform spread along the front.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2007.12.052