High-order solution of one-dimensional sine–Gordon equation using compact finite difference and DIRKN methods
In this work we propose a high-order and accurate method for solving the one-dimensional nonlinear sine–Gordon equation. The proposed method is based on applying a compact finite difference scheme and the diagonally implicit Runge–Kutta–Nyström (DIRKN) method for spatial and temporal components, res...
Uloženo v:
| Vydáno v: | Mathematical and computer modelling Ročník 51; číslo 5; s. 537 - 549 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.03.2010
Elsevier |
| Témata: | |
| ISSN: | 0895-7177, 1872-9479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this work we propose a high-order and accurate method for solving the one-dimensional nonlinear sine–Gordon equation. The proposed method is based on applying a compact finite difference scheme and the diagonally implicit Runge–Kutta–Nyström (DIRKN) method for spatial and temporal components, respectively. We apply a compact finite difference approximation of fourth order for discretizing the spatial derivative and a fourth-order
A
-stable DIRKN method for the time integration of the resulting nonlinear second-order system of ordinary differential equations. The proposed method has fourth-order accuracy in both space and time variables and is unconditionally stable. The results of numerical experiments show that the combination of a compact finite difference approximation of fourth order and a fourth-order
A
-stable DIRKN method gives an efficient algorithm for solving the one-dimensional sine–Gordon equation. |
|---|---|
| ISSN: | 0895-7177 1872-9479 |
| DOI: | 10.1016/j.mcm.2009.11.015 |