Optimization of thin-walled structures with geometric nonlinearity for maximum critical buckling load using optimality criteria
In this study, two optimality criteria are presented for shape optimization of thin-walled structures with geometric nonlinearity modeled by finite elements. The optimization problem considers the thickness and geometry design variables, and aims to maximize the critical load of the structure subjec...
Uloženo v:
| Vydáno v: | Thin-walled structures Ročník 46; číslo 12; s. 1319 - 1328 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.12.2008
New York, NY Elsevier Science |
| Témata: | |
| ISSN: | 0263-8231, 1879-3223 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this study, two optimality criteria are presented for shape optimization of thin-walled structures with geometric nonlinearity modeled by finite elements. The optimization problem considers the thickness and geometry design variables, and aims to maximize the critical load of the structure subject to constant total mass. Results of the optimization with optimality criteria are compared with those found by the gradient-based sequential quadratic programming method. It is shown that the optimum shape can be found using this method without performing the sensitivity analysis, and in less number of iterations compared to the standard gradient-based methods of optimization. |
|---|---|
| ISSN: | 0263-8231 1879-3223 |
| DOI: | 10.1016/j.tws.2008.04.002 |