Generic models for computational effects

A Freyd-category is a subtle generalisation of the notion of a category with finite products. It is suitable for modelling environments in call-by-value programming languages, such as the computational λ -calculus, with computational effects. We develop the theory of Freyd-categories with that in mi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical computer science Ročník 364; číslo 2; s. 254 - 269
Hlavný autor: Power, John
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 06.11.2006
Elsevier
Predmet:
ISSN:0304-3975, 1879-2294
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A Freyd-category is a subtle generalisation of the notion of a category with finite products. It is suitable for modelling environments in call-by-value programming languages, such as the computational λ -calculus, with computational effects. We develop the theory of Freyd-categories with that in mind. We first show that any countable Lawvere theory, hence any signature of operations with countable arity subject to equations, directly generates a Freyd-category. We then give canonical, universal embeddings of Freyd-categories into closed Freyd-categories, characterised by being free cocompletions. The combination of the two constructions sends a signature of operations and equations to the Kleisli category for the monad on the category Set generated by it, thus refining the analysis of computational effects given by monads. That in turn allows a more structural analysis of the λ c -calculus. Our leading examples of signatures arise from side-effects, interactive input/output and exceptions. We extend our analysis to an enriched setting in order to account for recursion and for computational effects and signatures that inherently involve it, such as partiality, nondeterminism and probabilistic nondeterminism.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2006.08.006