Generic models for computational effects
A Freyd-category is a subtle generalisation of the notion of a category with finite products. It is suitable for modelling environments in call-by-value programming languages, such as the computational λ -calculus, with computational effects. We develop the theory of Freyd-categories with that in mi...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 364; číslo 2; s. 254 - 269 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
06.11.2006
Elsevier |
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A
Freyd-category is a subtle generalisation of the notion of a category with finite products. It is suitable for modelling environments in call-by-value programming languages, such as the computational
λ
-calculus, with computational effects. We develop the theory of
Freyd-categories with that in mind. We first show that any countable Lawvere theory, hence any signature of operations with countable arity subject to equations, directly generates a
Freyd-category. We then give canonical, universal embeddings of
Freyd-categories into closed
Freyd-categories, characterised by being free cocompletions. The combination of the two constructions sends a signature of operations and equations to the Kleisli category for the monad on the category
Set generated by it, thus refining the analysis of computational effects given by monads. That in turn allows a more structural analysis of the
λ
c
-calculus. Our leading examples of signatures arise from side-effects, interactive input/output and exceptions. We extend our analysis to an enriched setting in order to account for recursion and for computational effects and signatures that inherently involve it, such as partiality, nondeterminism and probabilistic nondeterminism. |
|---|---|
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2006.08.006 |