Enhanced particle method with stress point integration for simulation of incompressible fluid-nonlinear elastic structure interaction
A fully-Lagrangian particle-based computational method is developed for simulation of incompressible Fluid, non-linear Structure Interaction (FSI) with incorporation of stress point integration (Randles and Libersky, 2005) to resolve instabilities related to zero-energy modes. Structural dynamics is...
Uloženo v:
| Vydáno v: | Journal of fluids and structures Ročník 81; s. 325 - 360 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2018
|
| Témata: | |
| ISSN: | 0889-9746, 1095-8622 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A fully-Lagrangian particle-based computational method is developed for simulation of incompressible Fluid, non-linear Structure Interaction (FSI) with incorporation of stress point integration (Randles and Libersky, 2005) to resolve instabilities related to zero-energy modes. Structural dynamics is founded on discretization of the divergence of stress according to Moving Least Squares (MLS) method. The stress point integration is incorporated in calculation of structural dynamics, resulting in a Dual Particle Dynamics (DPD) structure model (Randles and Libersky, 2005). A structure model based on nodal integration is also considered for comparison and simply referred to as MLS. The DPD and MLS structure models are coupled with an enhanced projection-based Moving Particle Semi-implicit (MPS) method as the fluid model, resulting in DPD–MPS and MLS–MPS FSI solvers, respectively. The enhanced performance of DPD with respect to MLS is first shown through a set of tests for structure model. Then the superior performance of DPD–MPS FSI solver with respect to MLS–MPS one is demonstrated through a set of FSI benchmark tests. The present study also presents a new algorithm for fluid–structure coupling via components of stress tensors in surface boundary stress points.
[Display omitted]
•Stress point integration is utilized in particle-based modeling of FSI.•Nonlinear structure models with nodal and stress point integrations are compared.•The structure models are coupled with enhanced MPS-based fluid model.•By setting stress points on the boundaries, a new version of coupling is achieved.•Clear improvements are obtained in suppressing zero energy modes in FSI modeling. |
|---|---|
| AbstractList | A fully-Lagrangian particle-based computational method is developed for simulation of incompressible Fluid, non-linear Structure Interaction (FSI) with incorporation of stress point integration (Randles and Libersky, 2005) to resolve instabilities related to zero-energy modes. Structural dynamics is founded on discretization of the divergence of stress according to Moving Least Squares (MLS) method. The stress point integration is incorporated in calculation of structural dynamics, resulting in a Dual Particle Dynamics (DPD) structure model (Randles and Libersky, 2005). A structure model based on nodal integration is also considered for comparison and simply referred to as MLS. The DPD and MLS structure models are coupled with an enhanced projection-based Moving Particle Semi-implicit (MPS) method as the fluid model, resulting in DPD–MPS and MLS–MPS FSI solvers, respectively. The enhanced performance of DPD with respect to MLS is first shown through a set of tests for structure model. Then the superior performance of DPD–MPS FSI solver with respect to MLS–MPS one is demonstrated through a set of FSI benchmark tests. The present study also presents a new algorithm for fluid–structure coupling via components of stress tensors in surface boundary stress points.
[Display omitted]
•Stress point integration is utilized in particle-based modeling of FSI.•Nonlinear structure models with nodal and stress point integrations are compared.•The structure models are coupled with enhanced MPS-based fluid model.•By setting stress points on the boundaries, a new version of coupling is achieved.•Clear improvements are obtained in suppressing zero energy modes in FSI modeling. |
| Author | Gotoh, Hitoshi Falahaty, Hosein Khayyer, Abbas |
| Author_xml | – sequence: 1 givenname: Hosein orcidid: 0000-0001-5542-719X surname: Falahaty fullname: Falahaty, Hosein – sequence: 2 givenname: Abbas surname: Khayyer fullname: Khayyer, Abbas email: khayyer@particle.kuciv.kyoto-u.ac.jp – sequence: 3 givenname: Hitoshi surname: Gotoh fullname: Gotoh, Hitoshi |
| BookMark | eNqNkc1qAyEUhaWk0CTtOwhdz1SdSUbpKoT0BwLdtGsxem0MkzGoaekD9L3rZLppV1nI5aLn45zjBI063wFCt5SUlND53a7c2fboTEzhqFMsGaG8JHVJKLtAY0rErOBzxkZoTDgXhWjq-RWaxLgjhIi6omP0veq2qtNg8EGF5HQLeA9p6w3-dGmLMxhixAfvuoTzgfegkvMdtj7g6PbHdli9zbfa7w_9c7fJlJOvIvttXQcqYGhVzHw8WD0GOOGC0r3-Gl1a1Ua4-Z1T9Pawel0-FeuXx-flYl3oijWp4I2oDAchzMZaIViTQwmjVKPtrFZcAbeWCCKAMzOvKs1qbSpqZ4Yw21i9qabofuDq4GMMYOUhuL0KX5IS2Tcqd_JPo7JvVJJa5kazevFPrV065U9BufZMxmpgQI754SDIqB30H-AC6CSNd2dxfgDKLqaI |
| CitedBy_id | crossref_primary_10_1016_j_cma_2023_116412 crossref_primary_10_1016_j_apor_2021_102734 crossref_primary_10_1016_j_euromechsol_2019_01_026 crossref_primary_10_1016_j_enganabound_2019_03_033 crossref_primary_10_1016_j_jfluidstructs_2019_06_004 crossref_primary_10_1007_s42286_020_00037_7 crossref_primary_10_1016_j_oceaneng_2021_109449 crossref_primary_10_1016_j_cma_2020_113166 crossref_primary_10_1007_s13344_019_0004_x crossref_primary_10_1016_j_camwa_2023_06_008 crossref_primary_10_1016_j_jfluidstructs_2019_07_005 crossref_primary_10_1016_j_oceaneng_2021_108870 crossref_primary_10_1016_j_oceaneng_2020_108552 crossref_primary_10_1016_j_euromechflu_2022_02_014 crossref_primary_10_1016_j_cma_2020_113538 |
| Cites_doi | 10.1016/j.jfluidstructs.2016.05.012 10.1016/j.jfluidstructs.2012.02.005 10.1016/j.apor.2013.10.002 10.1016/j.compstruc.2007.01.002 10.1016/j.compfluid.2014.06.028 10.2183/pjab.93.034 10.1007/BF02123482 10.1016/j.cma.2003.12.018 10.1006/jcph.1995.1010 10.1016/j.compstruc.2004.11.027 10.1007/s10444-004-1817-5 10.1016/j.cma.2016.03.027 10.1016/j.jfluidstructs.2014.07.007 10.1016/j.oceaneng.2013.09.007 10.1016/j.oceaneng.2014.04.016 10.1002/nme.2670 10.1002/nme.4451 10.1016/j.compfluid.2016.05.029 10.1016/j.coastaleng.2008.10.004 10.1016/S0045-7825(99)00441-7 10.1002/nme.4512 10.1016/S0898-1221(01)00290-5 10.1016/j.oceaneng.2016.04.006 10.1080/00221686.2015.1119209 10.1201/b18179-12 10.1016/j.coastaleng.2005.10.007 10.1016/j.jfluidstructs.2013.02.023 10.1016/j.cpc.2017.04.005 10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U 10.1007/s40722-016-0049-3 10.1016/j.apor.2010.01.001 10.1016/j.cma.2009.04.001 10.1016/j.compstruc.2007.01.019 10.1016/j.cma.2003.12.005 10.1080/00221680509500122 10.1016/j.jfluidstructs.2015.12.002 10.1016/S0045-7825(01)00254-7 10.1016/j.cma.2016.12.037 10.1016/j.compstruc.2016.08.012 10.1016/S0045-7825(99)00051-1 10.1016/j.oceaneng.2012.06.031 10.1016/j.jcp.2017.02.016 10.1002/nme.4327 10.1016/0045-7949(95)00059-P 10.1002/nme.1859 10.1016/j.jcp.2011.01.009 10.1016/S0045-7825(96)01234-0 10.1002/nme.242 10.1016/j.jcp.2016.12.005 10.1007/s00466-015-1131-8 10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9 10.1016/j.compstruc.2017.04.004 10.1007/s00466-008-0245-7 10.1016/j.compfluid.2013.05.001 10.1016/j.jfluidstructs.2017.01.005 10.1080/18811248.2011.9711690 10.1007/s40571-014-0024-5 10.1299/kikaia.71.16 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jfluidstructs.2018.04.012 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1095-8622 |
| EndPage | 360 |
| ExternalDocumentID | 10_1016_j_jfluidstructs_2018_04_012 S0889974617305303 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LG5 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~A~ ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c327t-8793d8e99dbff99278899daa7cf54a8ae8ff0909e82d633c24cd31f5d02f7fcb3 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440771500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0889-9746 |
| IngestDate | Tue Nov 18 21:55:55 EST 2025 Sat Nov 29 07:14:37 EST 2025 Fri Feb 23 02:47:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Moving Least Squares Moving Particle Semi-Implicit Dual Particle Dynamics Fluid–Structure Interaction Stress point integration |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c327t-8793d8e99dbff99278899daa7cf54a8ae8ff0909e82d633c24cd31f5d02f7fcb3 |
| ORCID | 0000-0001-5542-719X |
| PageCount | 36 |
| ParticipantIDs | crossref_primary_10_1016_j_jfluidstructs_2018_04_012 crossref_citationtrail_10_1016_j_jfluidstructs_2018_04_012 elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2018_04_012 |
| PublicationCentury | 2000 |
| PublicationDate | August 2018 2018-08-00 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of fluids and structures |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Timoshenko, Woinowsky-Krieger (b74) 1959 Shadloo, Oger, Le Touzé (b66) 2016; 136 Gray, Monaghan, Swift (b32) 2001; 190 Khayyer, Gotoh (b40) 2009; 56 Randles, Libersky (b59) 1996; 146 Lee, Noguchi, Koshizuka (b48) 2007; 85 Holzapfel (b35) 2000 Khayyer, Gotoh, Shimizu (b44) 2017; 332 Bonet, Wood (b12) 1997 Randles, Libersky (b62) 2005; 83 Chow, A., Rogers, B.D., Stansby, P.K., Lind, S., 2016. Converting DualSPHysics to solve strictly Incompressible SPH. 2nd DualSPHysics User Workshop, 6–7 December 2016. Sun, Colagrossi, Marrone, Zhang (b71) 2016; 305 Zhang, Ming, Wang (b85) 2013; 43 Wendland (b81) 1995; 4 Khayyer, Gotoh (b41) 2010; 32 Gotoh, Okayasu (b28) 2017; 93 Bonet, Kulasegaram (b8) 2001; 52 Gotoh, Sakai (b30) 2006; 53 Antoci (b2) 2006 Eghtesad, Shafiei, Mahzoon (b22) 2012; 30 Belytschko, Guo, Liu, Xiao (b5) 2000; 48 Hwang, Khayyer, Gotoh, Park (b36) 2014; 50 Dyka, Ingel (b20) 1994 Violeau (b79) 2012 Shao, Gotoh (b67) 2005; 43 Hwang, S.C., Khayyer, A., Gotoh, H., Park, J.C., 2015. Simulations of incompressible fluid flow-elastic structure interactions by a coupled Fully Lagrangian solver. In: Proceedings of the Twenty-fifth International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21–26. Sanchez, Randles (b64) 2012; 91 Xiao, Belytschko (b83) 2005; 23 Battley, M., Allen, T., Pehrson, P., Stenius, I., Rosen, A., 2009. Effects of panel stiffness on slamming responses of composite hull panels. In: 17th International Conference on Composite Materials, Edinburgh International Convention Centre (EICC), Edinburgh, UK. Krongauz, Belytschko (b46) 1998; 146 Landa, Lifshitz (b47) 1970 Khayyer, Gotoh, Falahaty, Shimizu, Nishijima (b43) 2017; 7 Rabczuk, Belytschko, Xiao (b56) 2004; 193 Dai, Ren, Zhuang, Rabczuk (b19) 2017; 14 Khayyer, Gotoh (b42) 2011; 230 Yang, Jones, McCue (b84) 2012; 55 Oger, Brosset, Guilcher, Jacquin, Deuff, Le Touzé (b53) 2010; 20 Rafiee, Thiagarajan (b58) 2009; 198 Chen, Hillman, Rüter (b16) 2013; 95 Dyka, Ingel (b21) 1995; 57 Li, Leduc, Combescure, Leboeuf (b49) 2014; 103 Gotoh, Khayyer (b27) 2016; 2 Sun, Djidjeli, Xing, Cheng (b72) 2016; 6 Song, Koshizuka, Oka (b69) 2005; 71 Bonet, Kulasegaram, Rodriguez-Paz, Profit (b10) 2004; 193 Gotoh, Shibahara, Sakai (b31) 2001; 9 Paik, Carrica (b55) 2014; 84 Rabczuk, Gracie, Song, Belytschko (b57) 2010; 81 Bonet, Kulasegaram (b9) 2002; 126 Caleyron, Combescure, Faucher, Potapov (b13) 2013; 39 Fourey (b23) 2012 Cercos-Pita, Antuono, Colagrossi, Souto-Iglesias (b15) 2017; 317 Gong, Shao, Hua, Wang, Tan (b26) 2016; 65 Koshizuka (b45) 2011; 48 Wu, Dongmin, Wright (b82) 2016; 177 Trask, N.B., Kim, K., Tartakovsky, A.P., Perego, M., Parks, M.L., 2015. A highly-scalable implicit SPH code for simulating single-and multi-phase flows in geometrically complex bounded domains. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), SAND2015-5407C. Chen, Hu, Puso, Wu, Zhang (b17) 2007 Fourey, Hermange, Oger (b24) 2017; 217 Vignjevic, Campbell, Libersky (b78) 2000; 184 Meringolo, Colagrossi, Marrone, Aristodemo (b52) 2017; 70 Paik (b54) 2010 Fourey, Oger, Touzé, Alessandrini (b25) 2010; 10 Liu, Liu (b51) 2003 Belytschko, Xiao (b7) 2000; 43 Violeau, Rogers (b80) 2016; 54 Stenius, Rosén, Battley, Allen (b70) 2013; 74 Siemann, Langrand (b68) 2017; 188 Swegle, Hicks, Attaway (b73) 1995; 116 Allen (b1) 2013 Bonet, Lok (b11) 1999; 180 Guo, X., Rogers, B.D., 2015. Developing highly scalable 3-D incompressible SPH. ARCHER Community, ISPH embedded CSE Report. Antoci, Gallati, Sibilla (b3) 2007; 85 Vidal, Bonet, Huerta (b77) 2007; 69 Sanchez, Randles (b65) 2013; 94 Zhilun (b87) 1990 Tsuruta, Khayyer, Gotoh (b76) 2013; 82 Gotoh, Okayasu, Watanabe (b29) 2013 Idelsohn, Marti, Souto-Iglesias, Onate (b39) 2008; 43 Randles, Petschek, Libersky, Dyka (b63) 2003 Hwang, Park, Gotoh, Khayyer, Kang (b38) 2016; 118 Randles, Libersky (b61) 2000; 48 Zhang, Xiangyu, Adams (b86) 2017; 337 Li, Leduc, Nunez-Ramirez, Combescure, Marongiu (b50) 2015; 55 Camilleri, J., Temarel, P., Taunton, D., 2015. Two-dimensional numerical modelling of slamming impact loads on high-speed craft. In: 7th International Conference on Hydroelasticity in Marine Technology Split, Croatia, September. Hillman, Chen, Chi (b34) 2014; 1 Allen (10.1016/j.jfluidstructs.2018.04.012_b1) 2013 Bonet (10.1016/j.jfluidstructs.2018.04.012_b9) 2002; 126 Song (10.1016/j.jfluidstructs.2018.04.012_b69) 2005; 71 Caleyron (10.1016/j.jfluidstructs.2018.04.012_b13) 2013; 39 Swegle (10.1016/j.jfluidstructs.2018.04.012_b73) 1995; 116 Dyka (10.1016/j.jfluidstructs.2018.04.012_b20) 1994 Fourey (10.1016/j.jfluidstructs.2018.04.012_b24) 2017; 217 Gotoh (10.1016/j.jfluidstructs.2018.04.012_b28) 2017; 93 Koshizuka (10.1016/j.jfluidstructs.2018.04.012_b45) 2011; 48 Bonet (10.1016/j.jfluidstructs.2018.04.012_b11) 1999; 180 Siemann (10.1016/j.jfluidstructs.2018.04.012_b68) 2017; 188 Lee (10.1016/j.jfluidstructs.2018.04.012_b48) 2007; 85 Landa (10.1016/j.jfluidstructs.2018.04.012_b47) 1970 Meringolo (10.1016/j.jfluidstructs.2018.04.012_b52) 2017; 70 Vignjevic (10.1016/j.jfluidstructs.2018.04.012_b78) 2000; 184 Liu (10.1016/j.jfluidstructs.2018.04.012_b51) 2003 Antoci (10.1016/j.jfluidstructs.2018.04.012_b2) 2006 Khayyer (10.1016/j.jfluidstructs.2018.04.012_b42) 2011; 230 Dyka (10.1016/j.jfluidstructs.2018.04.012_b21) 1995; 57 10.1016/j.jfluidstructs.2018.04.012_b37 Sun (10.1016/j.jfluidstructs.2018.04.012_b72) 2016; 6 Vidal (10.1016/j.jfluidstructs.2018.04.012_b77) 2007; 69 Bonet (10.1016/j.jfluidstructs.2018.04.012_b12) 1997 10.1016/j.jfluidstructs.2018.04.012_b75 Gotoh (10.1016/j.jfluidstructs.2018.04.012_b31) 2001; 9 10.1016/j.jfluidstructs.2018.04.012_b33 Sanchez (10.1016/j.jfluidstructs.2018.04.012_b64) 2012; 91 Khayyer (10.1016/j.jfluidstructs.2018.04.012_b43) 2017; 7 Wendland (10.1016/j.jfluidstructs.2018.04.012_b81) 1995; 4 Timoshenko (10.1016/j.jfluidstructs.2018.04.012_b74) 1959 Li (10.1016/j.jfluidstructs.2018.04.012_b49) 2014; 103 Antoci (10.1016/j.jfluidstructs.2018.04.012_b3) 2007; 85 Bonet (10.1016/j.jfluidstructs.2018.04.012_b10) 2004; 193 Hwang (10.1016/j.jfluidstructs.2018.04.012_b38) 2016; 118 Khayyer (10.1016/j.jfluidstructs.2018.04.012_b40) 2009; 56 Li (10.1016/j.jfluidstructs.2018.04.012_b50) 2015; 55 Rafiee (10.1016/j.jfluidstructs.2018.04.012_b58) 2009; 198 Shadloo (10.1016/j.jfluidstructs.2018.04.012_b66) 2016; 136 Gray (10.1016/j.jfluidstructs.2018.04.012_b32) 2001; 190 Randles (10.1016/j.jfluidstructs.2018.04.012_b59) 1996; 146 Wu (10.1016/j.jfluidstructs.2018.04.012_b82) 2016; 177 10.1016/j.jfluidstructs.2018.04.012_b4 Shao (10.1016/j.jfluidstructs.2018.04.012_b67) 2005; 43 Krongauz (10.1016/j.jfluidstructs.2018.04.012_b46) 1998; 146 Hillman (10.1016/j.jfluidstructs.2018.04.012_b34) 2014; 1 Stenius (10.1016/j.jfluidstructs.2018.04.012_b70) 2013; 74 Zhang (10.1016/j.jfluidstructs.2018.04.012_b85) 2013; 43 Randles (10.1016/j.jfluidstructs.2018.04.012_b61) 2000; 48 Violeau (10.1016/j.jfluidstructs.2018.04.012_b79) 2012 Cercos-Pita (10.1016/j.jfluidstructs.2018.04.012_b15) 2017; 317 Zhilun (10.1016/j.jfluidstructs.2018.04.012_b87) 1990 Gotoh (10.1016/j.jfluidstructs.2018.04.012_b27) 2016; 2 Khayyer (10.1016/j.jfluidstructs.2018.04.012_b41) 2010; 32 Xiao (10.1016/j.jfluidstructs.2018.04.012_b83) 2005; 23 Yang (10.1016/j.jfluidstructs.2018.04.012_b84) 2012; 55 Paik (10.1016/j.jfluidstructs.2018.04.012_b55) 2014; 84 Belytschko (10.1016/j.jfluidstructs.2018.04.012_b5) 2000; 48 Randles (10.1016/j.jfluidstructs.2018.04.012_b62) 2005; 83 Oger (10.1016/j.jfluidstructs.2018.04.012_b53) 2010; 20 Gong (10.1016/j.jfluidstructs.2018.04.012_b26) 2016; 65 Gotoh (10.1016/j.jfluidstructs.2018.04.012_b29) 2013 Chen (10.1016/j.jfluidstructs.2018.04.012_b17) 2007 Dai (10.1016/j.jfluidstructs.2018.04.012_b19) 2017; 14 Idelsohn (10.1016/j.jfluidstructs.2018.04.012_b39) 2008; 43 10.1016/j.jfluidstructs.2018.04.012_b14 Belytschko (10.1016/j.jfluidstructs.2018.04.012_b7) 2000; 43 Fourey (10.1016/j.jfluidstructs.2018.04.012_b25) 2010; 10 Tsuruta (10.1016/j.jfluidstructs.2018.04.012_b76) 2013; 82 Fourey (10.1016/j.jfluidstructs.2018.04.012_b23) 2012 Rabczuk (10.1016/j.jfluidstructs.2018.04.012_b57) 2010; 81 Paik (10.1016/j.jfluidstructs.2018.04.012_b54) 2010 10.1016/j.jfluidstructs.2018.04.012_b18 Gotoh (10.1016/j.jfluidstructs.2018.04.012_b30) 2006; 53 Sanchez (10.1016/j.jfluidstructs.2018.04.012_b65) 2013; 94 Bonet (10.1016/j.jfluidstructs.2018.04.012_b8) 2001; 52 Violeau (10.1016/j.jfluidstructs.2018.04.012_b80) 2016; 54 Sun (10.1016/j.jfluidstructs.2018.04.012_b71) 2016; 305 Holzapfel (10.1016/j.jfluidstructs.2018.04.012_b35) 2000 Hwang (10.1016/j.jfluidstructs.2018.04.012_b36) 2014; 50 Zhang (10.1016/j.jfluidstructs.2018.04.012_b86) 2017; 337 Khayyer (10.1016/j.jfluidstructs.2018.04.012_b44) 2017; 332 Randles (10.1016/j.jfluidstructs.2018.04.012_b63) 2003 Rabczuk (10.1016/j.jfluidstructs.2018.04.012_b56) 2004; 193 Chen (10.1016/j.jfluidstructs.2018.04.012_b16) 2013; 95 Eghtesad (10.1016/j.jfluidstructs.2018.04.012_b22) 2012; 30 |
| References_xml | – volume: 103 start-page: 6 year: 2014 end-page: 17 ident: b49 article-title: Coupling of SPH-ALE method and finite element method for transient fluid–structure interaction publication-title: Comput. & Fluids – reference: Guo, X., Rogers, B.D., 2015. Developing highly scalable 3-D incompressible SPH. ARCHER Community, ISPH embedded CSE Report. – volume: 48 start-page: 155 year: 2011 end-page: 168 ident: b45 article-title: Current achievements and future perspectives on particle simulation technologies for fluid dynamics and heat transfer publication-title: J. Nucl. Sci. Technol. – volume: 70 start-page: 1 year: 2017 end-page: 23 ident: b52 article-title: On the filtering of acoustic components in weakly-compressible SPH simulations publication-title: J. Fluids Struct. – volume: 217 start-page: 66 year: 2017 end-page: 81 ident: b24 article-title: An efficient FSI coupling strategy between Smoothed Particle Hydrodynamics and Finite Element methods publication-title: Comput. Phys. Comm. – volume: 6 start-page: 295 year: 2016 end-page: 323 ident: b72 article-title: Coupled MPS-modal superposition method for 2D non-linear fluid–structure interaction problems with free surface publication-title: J. Fluids Struct. – volume: 10 year: 2010 ident: b25 article-title: Violent fluid-structure interaction simulations using a coupled SPH/FEM method publication-title: IOP Conf. Ser.: Mater. Sci. Eng. – volume: 32 start-page: 124 year: 2010 end-page: 131 ident: b41 article-title: A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method publication-title: Appl. Ocean Res. – volume: 30 start-page: 141 year: 2012 end-page: 158 ident: b22 article-title: A new fluid–solid interface algorithm for simulating fluid structure problems in FGM plates publication-title: J. Fluids Struct. – volume: 93 start-page: 525 year: 2017 end-page: 546 ident: b28 article-title: Computational wave dynamics for innovative design of coastal structures publication-title: Proc. Japan Acad. Ser. B – volume: 23 start-page: 171 year: 2005 end-page: 190 ident: b83 article-title: Material stability analysis of particle methods publication-title: Adv. Comput. Math. – volume: 74 start-page: 1 year: 2013 end-page: 15 ident: b70 article-title: Experimental hydroelastic characterization of slamming loaded marine panels publication-title: Ocean Eng. – volume: 57 start-page: 573 year: 1995 end-page: 580 ident: b21 article-title: An approach for tensile instability in smoothed particle hydrodynamics publication-title: Comput. Struct. – volume: 1 start-page: 245 year: 2014 end-page: 256 ident: b34 article-title: Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems publication-title: Comput. Part. Mech. – volume: 55 start-page: 697 year: 2015 end-page: 718 ident: b50 article-title: A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid–structure interaction problems with large interface motion publication-title: Comput. Mech. – volume: 9 start-page: 339 year: 2001 end-page: 347 ident: b31 article-title: Sub-particle-scale turbulence model for the MPS method -Lagrangian flow model for hydraulic engineering publication-title: Comput. Fluid Dynam. J. – volume: 71 start-page: 16 year: 2005 end-page: 22 ident: b69 article-title: Dynamic Analysis of elastic solids by MPS method publication-title: Trans. Japan Soc. Mech. Eng. Ser. A – volume: 2 start-page: 251 year: 2016 end-page: 278 ident: b27 article-title: Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering publication-title: J. Ocean Eng. Marine Energy – volume: 146 start-page: 371 year: 1996 end-page: 386 ident: b59 article-title: Smoothed particle hydrodynamics: Some recent improvements and applications publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 53 start-page: 171 year: 2006 end-page: 179 ident: b30 article-title: Key issues in the particle method for computation of wave breaking publication-title: Coast. Eng. – volume: 14 year: 2017 ident: b19 article-title: Dual-support smoothed particle hydrodynamics for elastic mechanics publication-title: Int. J. Comput. Math. – volume: 118 start-page: 227 year: 2016 end-page: 241 ident: b38 article-title: Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid–structure interaction analysis method publication-title: Ocean Eng. – volume: 180 start-page: 97 year: 1999 end-page: 115 ident: b11 article-title: Variational and momentum preservation aspects of smooth particle hydrodynamic formulations publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 332 start-page: 236 year: 2017 end-page: 256 ident: b44 article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context publication-title: J. Comput. Phys. – volume: 48 start-page: 1359 year: 2000 end-page: 1400 ident: b5 article-title: A unified stability analysis of meshless particle methods publication-title: Internat. J. Numer. Methods Engrg. – volume: 85 start-page: 688 year: 2007 end-page: 697 ident: b48 article-title: Fluid–shell structure interaction analysis by coupled particle and finite element method publication-title: Comput. Struct. – volume: 91 start-page: 1227 year: 2012 end-page: 1250 ident: b64 article-title: Dynamic failure simulation of quasi-brittle material in dual particle dynamics publication-title: Internat. J. Numer. Methods Engrg. – volume: 52 start-page: 1203 year: 2001 end-page: 1220 ident: b8 article-title: Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods publication-title: Internat. J. Numer. Methods Engrg. – volume: 43 start-page: 125 year: 2008 end-page: 132 ident: b39 article-title: Interaction between an elastic structure and free-surface flows: Experimental versus numerical comparisons using the PFEM publication-title: Comput. Mech. – year: 2000 ident: b35 article-title: Non-Linear Solid Mechanics: A Continuum Approach for Engineering – volume: 43 start-page: 276 year: 2005 end-page: 289 ident: b67 article-title: Turbulence particle models for tracking free surfaces publication-title: J. Hydraul. Res. – volume: 82 start-page: 158 year: 2013 end-page: 164 ident: b76 article-title: A short note on dynamic stabilization of moving particle semi-implicit method publication-title: Comput. & Fluids – volume: 20 start-page: 181 year: 2010 end-page: 189 ident: b53 article-title: Simulations of hydro-elastic impacts using a parallel SPH model publication-title: Int. J. Offshore Polar Eng. – volume: 83 start-page: 1476 year: 2005 end-page: 1486 ident: b62 article-title: Boundary conditions for a dual particle method publication-title: Comput. Struct. – start-page: 7 year: 1970 ident: b47 article-title: Elasticity, Course of Theoretical Physics – volume: 230 start-page: 3093 year: 2011 end-page: 3118 ident: b42 article-title: Enhancement of stability and accuracy of the moving particle semi-implicit method publication-title: J. Comput. Phys. – reference: Trask, N.B., Kim, K., Tartakovsky, A.P., Perego, M., Parks, M.L., 2015. A highly-scalable implicit SPH code for simulating single-and multi-phase flows in geometrically complex bounded domains. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), SAND2015-5407C. – volume: 81 start-page: 48 year: 2010 end-page: 71 ident: b57 article-title: Immersed particle method for fluid–structure interaction publication-title: Internat. J. Numer. Methods Engrg. – volume: 190 start-page: 6641 year: 2001 end-page: 6662 ident: b32 article-title: SPH elastic dynamics publication-title: Comput. Methods Appl. Mech. Engrg. – year: 1959 ident: b74 article-title: Theory of Plates and Shells – volume: 69 start-page: 2687 year: 2007 end-page: 2710 ident: b77 article-title: Stabilized updated Lagrangian corrected SPH for explicit dynamic problems publication-title: Internat. J. Numer. Methods Engrg. – volume: 39 start-page: 126 year: 2013 end-page: 153 ident: b13 article-title: SPH modeling of fluid–solid interaction for dynamic failure analysis of fluid-filled thin shells publication-title: J. Fluids Struct. – volume: 184 start-page: 67 year: 2000 end-page: 85 ident: b78 article-title: A treatment of zero-energy modes in the smoothed particle hydrodynamics method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 65 start-page: 155 year: 2016 end-page: 179 ident: b26 article-title: Two-phase SPH simulation of fluid–structure interactions publication-title: J. Fluids Struct. – volume: 48 start-page: 1445 year: 2000 end-page: 1462 ident: b61 article-title: Normalized SPH with stress points publication-title: Internat. J. Numer. Methods Engrg. – volume: 136 start-page: 11 year: 2016 end-page: 34 ident: b66 article-title: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges publication-title: Comput. & Fluids – reference: Camilleri, J., Temarel, P., Taunton, D., 2015. Two-dimensional numerical modelling of slamming impact loads on high-speed craft. In: 7th International Conference on Hydroelasticity in Marine Technology Split, Croatia, September. – reference: Chow, A., Rogers, B.D., Stansby, P.K., Lind, S., 2016. Converting DualSPHysics to solve strictly Incompressible SPH. 2nd DualSPHysics User Workshop, 6–7 December 2016. – volume: 193 start-page: 1035 year: 2004 end-page: 1063 ident: b56 article-title: Stable particle methods based on Lagrangian kernels publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 43 start-page: 223 year: 2013 end-page: 233 ident: b85 article-title: Coupled SPHS–BEM method for transient fluid–structure interaction and applications in underwater impacts publication-title: Appl. Ocean Res. – volume: 56 start-page: 419 year: 2009 end-page: 440 ident: b40 article-title: Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure publication-title: Coast. Eng. – year: 2010 ident: b54 article-title: Simulation of fluid–structure interaction for surface ships with linear/non-linear deformations – volume: 177 start-page: 141 year: 2016 end-page: 161 ident: b82 article-title: A coupled SPH-DEM model for fluid–structure interaction problems with free-surface flow and structural failure publication-title: Comput. Struct. – year: 2003 ident: b51 article-title: Smoothed Particle Hydrodynamics: A Meshfree Particle Method – year: 2006 ident: b2 article-title: Simulazione numerica dell’ interazione fluido-struttura con la tecnica SPH – start-page: 57 year: 2007 end-page: 75 ident: b17 article-title: Strain smoothing for stabilization and regularization of Galerkin meshfree methods publication-title: Meshfree Methods for Partial Differential Equations III – volume: 43 start-page: 329 year: 2000 end-page: 350 ident: b7 article-title: Stability analysis of particle methods with corrected derivatives publication-title: Comput. Math. Appl. – year: 1990 ident: b87 article-title: Elastic Mechanics – year: 2012 ident: b23 article-title: Développement d’une méthode de couplage fluide structure SPH Eléments Finis en vue de son application à l’hydrodynamique navale – year: 1997 ident: b12 article-title: Non-Linear Continuum Mechanics for Finite Element Analysis – volume: 116 start-page: 123 year: 1995 end-page: 134 ident: b73 article-title: Smoothed particle hydrodynamics stability analysis publication-title: J. Comput. Phys. – volume: 95 start-page: 387 year: 2013 end-page: 418 ident: b16 article-title: An arbitrary order variationally consistent integration for Galerkin meshfree methods publication-title: Internat. J. Numer. Methods Engrg. – volume: 146 start-page: 371 year: 1998 end-page: 386 ident: b46 article-title: Consistent pseudo-derivatives in meshless methods publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 84 start-page: 201 year: 2014 end-page: 212 ident: b55 article-title: Fluid–structure interaction for an elastic structure interacting with free surface in a rolling tank publication-title: Ocean Eng. – reference: Battley, M., Allen, T., Pehrson, P., Stenius, I., Rosen, A., 2009. Effects of panel stiffness on slamming responses of composite hull panels. In: 17th International Conference on Composite Materials, Edinburgh International Convention Centre (EICC), Edinburgh, UK. – start-page: 339 year: 2003 end-page: 357 ident: b63 article-title: Stability of DPD and SPH publication-title: Meshfree Methods for Partial Differential Equations. Proc, Bonn LNCSE – volume: 305 start-page: 849 year: 2016 end-page: 868 ident: b71 article-title: Detection of Lagrangian coherent structures in the SPH framework publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 193 start-page: 1245 year: 2004 end-page: 1256 ident: b10 article-title: Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 198 start-page: 2785 year: 2009 end-page: 2795 ident: b58 article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2012 ident: b79 article-title: Fluid Mechanics and the SPH Method, Theory and Applications – volume: 50 start-page: 497 year: 2014 end-page: 511 ident: b36 article-title: Development of a fully Lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems publication-title: J. Fluids Struct. – volume: 188 start-page: 95 year: 2017 end-page: 108 ident: b68 article-title: Coupled fluid–structure computational methods for aircraft ditching simulations: Comparison of ALE-FE and SPH-FE approaches publication-title: Comput. Struct. – volume: 94 start-page: 183 year: 2013 end-page: 203 ident: b65 article-title: A quasi-static dual particle method for solids based on dual particle dynamics publication-title: Internat. J. Numer. Methods Engrg. – year: 2013 ident: b1 article-title: Mechanics of flexible composite hull panels subjected to water impacts – volume: 55 start-page: 136 year: 2012 end-page: 147 ident: b84 article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model publication-title: Ocean Eng. – volume: 54 start-page: 1 year: 2016 end-page: 26 ident: b80 article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future publication-title: J. Hydraul. Res. – reference: Hwang, S.C., Khayyer, A., Gotoh, H., Park, J.C., 2015. Simulations of incompressible fluid flow-elastic structure interactions by a coupled Fully Lagrangian solver. In: Proceedings of the Twenty-fifth International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21–26. – volume: 126 start-page: 133 year: 2002 end-page: 155 ident: b9 article-title: A simplified approach to enhance the performance of smooth particle hydrodynamics methods publication-title: Appl. Math. Comput. – year: 2013 ident: b29 article-title: Computational Wave Dynamics (Advanced Series on Ocean Engineering) – volume: 7 start-page: 299 year: 2017 end-page: 318 ident: b43 article-title: Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D Hydroelastic slamming publication-title: Ocean Syst. Eng. – volume: 85 start-page: 879 year: 2007 end-page: 890 ident: b3 article-title: Numerical simulation of fluid–structure interaction by SPH publication-title: Comput. Struct. – year: 1994 ident: b20 article-title: Addressing Tension Instability in SPH Method – volume: 337 start-page: 216 year: 2017 end-page: 232 ident: b86 article-title: A generalized transport-velocity formulation for smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 317 start-page: 771 year: 2017 end-page: 791 ident: b15 article-title: SPH energy conservation for fluid-solid interactions publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 4 start-page: 389 year: 1995 end-page: 396 ident: b81 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. – volume: 10 issue: 1 year: 2010 ident: 10.1016/j.jfluidstructs.2018.04.012_b25 article-title: Violent fluid-structure interaction simulations using a coupled SPH/FEM method publication-title: IOP Conf. Ser.: Mater. Sci. Eng. – volume: 65 start-page: 155 year: 2016 ident: 10.1016/j.jfluidstructs.2018.04.012_b26 article-title: Two-phase SPH simulation of fluid–structure interactions publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2016.05.012 – volume: 9 start-page: 339 issue: 4 year: 2001 ident: 10.1016/j.jfluidstructs.2018.04.012_b31 article-title: Sub-particle-scale turbulence model for the MPS method -Lagrangian flow model for hydraulic engineering publication-title: Comput. Fluid Dynam. J. – volume: 30 start-page: 141 year: 2012 ident: 10.1016/j.jfluidstructs.2018.04.012_b22 article-title: A new fluid–solid interface algorithm for simulating fluid structure problems in FGM plates publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2012.02.005 – ident: 10.1016/j.jfluidstructs.2018.04.012_b18 – ident: 10.1016/j.jfluidstructs.2018.04.012_b37 – year: 2003 ident: 10.1016/j.jfluidstructs.2018.04.012_b51 – year: 2006 ident: 10.1016/j.jfluidstructs.2018.04.012_b2 – ident: 10.1016/j.jfluidstructs.2018.04.012_b4 – year: 1994 ident: 10.1016/j.jfluidstructs.2018.04.012_b20 – volume: 43 start-page: 223 year: 2013 ident: 10.1016/j.jfluidstructs.2018.04.012_b85 article-title: Coupled SPHS–BEM method for transient fluid–structure interaction and applications in underwater impacts publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2013.10.002 – volume: 85 start-page: 879 year: 2007 ident: 10.1016/j.jfluidstructs.2018.04.012_b3 article-title: Numerical simulation of fluid–structure interaction by SPH publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.01.002 – volume: 103 start-page: 6 year: 2014 ident: 10.1016/j.jfluidstructs.2018.04.012_b49 article-title: Coupling of SPH-ALE method and finite element method for transient fluid–structure interaction publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2014.06.028 – start-page: 339 year: 2003 ident: 10.1016/j.jfluidstructs.2018.04.012_b63 article-title: Stability of DPD and SPH – volume: 93 start-page: 525 issue: 9 year: 2017 ident: 10.1016/j.jfluidstructs.2018.04.012_b28 article-title: Computational wave dynamics for innovative design of coastal structures publication-title: Proc. Japan Acad. Ser. B doi: 10.2183/pjab.93.034 – volume: 4 start-page: 389 year: 1995 ident: 10.1016/j.jfluidstructs.2018.04.012_b81 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. doi: 10.1007/BF02123482 – ident: 10.1016/j.jfluidstructs.2018.04.012_b75 – volume: 193 start-page: 1245 issue: 12 year: 2004 ident: 10.1016/j.jfluidstructs.2018.04.012_b10 article-title: Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2003.12.018 – ident: 10.1016/j.jfluidstructs.2018.04.012_b33 – year: 1959 ident: 10.1016/j.jfluidstructs.2018.04.012_b74 – volume: 116 start-page: 123 year: 1995 ident: 10.1016/j.jfluidstructs.2018.04.012_b73 article-title: Smoothed particle hydrodynamics stability analysis publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1010 – volume: 83 start-page: 1476 year: 2005 ident: 10.1016/j.jfluidstructs.2018.04.012_b62 article-title: Boundary conditions for a dual particle method publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2004.11.027 – volume: 23 start-page: 171 year: 2005 ident: 10.1016/j.jfluidstructs.2018.04.012_b83 article-title: Material stability analysis of particle methods publication-title: Adv. Comput. Math. doi: 10.1007/s10444-004-1817-5 – volume: 305 start-page: 849 year: 2016 ident: 10.1016/j.jfluidstructs.2018.04.012_b71 article-title: Detection of Lagrangian coherent structures in the SPH framework publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.03.027 – year: 2012 ident: 10.1016/j.jfluidstructs.2018.04.012_b79 – volume: 126 start-page: 133 issue: 2 year: 2002 ident: 10.1016/j.jfluidstructs.2018.04.012_b9 article-title: A simplified approach to enhance the performance of smooth particle hydrodynamics methods publication-title: Appl. Math. Comput. – volume: 50 start-page: 497 year: 2014 ident: 10.1016/j.jfluidstructs.2018.04.012_b36 article-title: Development of a fully Lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2014.07.007 – volume: 74 start-page: 1 year: 2013 ident: 10.1016/j.jfluidstructs.2018.04.012_b70 article-title: Experimental hydroelastic characterization of slamming loaded marine panels publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2013.09.007 – volume: 84 start-page: 201 year: 2014 ident: 10.1016/j.jfluidstructs.2018.04.012_b55 article-title: Fluid–structure interaction for an elastic structure interacting with free surface in a rolling tank publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2014.04.016 – volume: 81 start-page: 48 year: 2010 ident: 10.1016/j.jfluidstructs.2018.04.012_b57 article-title: Immersed particle method for fluid–structure interaction publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2670 – volume: 94 start-page: 183 year: 2013 ident: 10.1016/j.jfluidstructs.2018.04.012_b65 article-title: A quasi-static dual particle method for solids based on dual particle dynamics publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4451 – volume: 136 start-page: 11 year: 2016 ident: 10.1016/j.jfluidstructs.2018.04.012_b66 article-title: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2016.05.029 – start-page: 7 year: 1970 ident: 10.1016/j.jfluidstructs.2018.04.012_b47 – volume: 56 start-page: 419 issue: 4 year: 2009 ident: 10.1016/j.jfluidstructs.2018.04.012_b40 article-title: Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2008.10.004 – volume: 184 start-page: 67 year: 2000 ident: 10.1016/j.jfluidstructs.2018.04.012_b78 article-title: A treatment of zero-energy modes in the smoothed particle hydrodynamics method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(99)00441-7 – year: 1990 ident: 10.1016/j.jfluidstructs.2018.04.012_b87 – volume: 95 start-page: 387 issue: 5 year: 2013 ident: 10.1016/j.jfluidstructs.2018.04.012_b16 article-title: An arbitrary order variationally consistent integration for Galerkin meshfree methods publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4512 – volume: 43 start-page: 329 year: 2000 ident: 10.1016/j.jfluidstructs.2018.04.012_b7 article-title: Stability analysis of particle methods with corrected derivatives publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(01)00290-5 – volume: 118 start-page: 227 year: 2016 ident: 10.1016/j.jfluidstructs.2018.04.012_b38 article-title: Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid–structure interaction analysis method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.04.006 – volume: 54 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.jfluidstructs.2018.04.012_b80 article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2015.1119209 – ident: 10.1016/j.jfluidstructs.2018.04.012_b14 doi: 10.1201/b18179-12 – volume: 53 start-page: 171 year: 2006 ident: 10.1016/j.jfluidstructs.2018.04.012_b30 article-title: Key issues in the particle method for computation of wave breaking publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2005.10.007 – volume: 39 start-page: 126 year: 2013 ident: 10.1016/j.jfluidstructs.2018.04.012_b13 article-title: SPH modeling of fluid–solid interaction for dynamic failure analysis of fluid-filled thin shells publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2013.02.023 – volume: 217 start-page: 66 year: 2017 ident: 10.1016/j.jfluidstructs.2018.04.012_b24 article-title: An efficient FSI coupling strategy between Smoothed Particle Hydrodynamics and Finite Element methods publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2017.04.005 – volume: 48 start-page: 1359 year: 2000 ident: 10.1016/j.jfluidstructs.2018.04.012_b5 article-title: A unified stability analysis of meshless particle methods publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U – volume: 2 start-page: 251 issue: 3 year: 2016 ident: 10.1016/j.jfluidstructs.2018.04.012_b27 article-title: Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering publication-title: J. Ocean Eng. Marine Energy doi: 10.1007/s40722-016-0049-3 – volume: 32 start-page: 124 issue: 1 year: 2010 ident: 10.1016/j.jfluidstructs.2018.04.012_b41 article-title: A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2010.01.001 – volume: 198 start-page: 2785 year: 2009 ident: 10.1016/j.jfluidstructs.2018.04.012_b58 article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2009.04.001 – volume: 85 start-page: 688 year: 2007 ident: 10.1016/j.jfluidstructs.2018.04.012_b48 article-title: Fluid–shell structure interaction analysis by coupled particle and finite element method publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.01.019 – volume: 193 start-page: 1035 year: 2004 ident: 10.1016/j.jfluidstructs.2018.04.012_b56 article-title: Stable particle methods based on Lagrangian kernels publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2003.12.005 – volume: 43 start-page: 276 issue: 3 year: 2005 ident: 10.1016/j.jfluidstructs.2018.04.012_b67 article-title: Turbulence particle models for tracking free surfaces publication-title: J. Hydraul. Res. doi: 10.1080/00221680509500122 – volume: 6 start-page: 295 year: 2016 ident: 10.1016/j.jfluidstructs.2018.04.012_b72 article-title: Coupled MPS-modal superposition method for 2D non-linear fluid–structure interaction problems with free surface publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2015.12.002 – year: 2013 ident: 10.1016/j.jfluidstructs.2018.04.012_b29 – volume: 190 start-page: 6641 year: 2001 ident: 10.1016/j.jfluidstructs.2018.04.012_b32 article-title: SPH elastic dynamics publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(01)00254-7 – start-page: 57 year: 2007 ident: 10.1016/j.jfluidstructs.2018.04.012_b17 article-title: Strain smoothing for stabilization and regularization of Galerkin meshfree methods – volume: 317 start-page: 771 year: 2017 ident: 10.1016/j.jfluidstructs.2018.04.012_b15 article-title: SPH energy conservation for fluid-solid interactions publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.12.037 – volume: 177 start-page: 141 year: 2016 ident: 10.1016/j.jfluidstructs.2018.04.012_b82 article-title: A coupled SPH-DEM model for fluid–structure interaction problems with free-surface flow and structural failure publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.08.012 – volume: 180 start-page: 97 year: 1999 ident: 10.1016/j.jfluidstructs.2018.04.012_b11 article-title: Variational and momentum preservation aspects of smooth particle hydrodynamic formulations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(99)00051-1 – volume: 55 start-page: 136 year: 2012 ident: 10.1016/j.jfluidstructs.2018.04.012_b84 article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2012.06.031 – year: 2010 ident: 10.1016/j.jfluidstructs.2018.04.012_b54 – volume: 337 start-page: 216 year: 2017 ident: 10.1016/j.jfluidstructs.2018.04.012_b86 article-title: A generalized transport-velocity formulation for smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.02.016 – volume: 91 start-page: 1227 issue: 11 year: 2012 ident: 10.1016/j.jfluidstructs.2018.04.012_b64 article-title: Dynamic failure simulation of quasi-brittle material in dual particle dynamics publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4327 – volume: 57 start-page: 573 year: 1995 ident: 10.1016/j.jfluidstructs.2018.04.012_b21 article-title: An approach for tensile instability in smoothed particle hydrodynamics publication-title: Comput. Struct. doi: 10.1016/0045-7949(95)00059-P – volume: 69 start-page: 2687 year: 2007 ident: 10.1016/j.jfluidstructs.2018.04.012_b77 article-title: Stabilized updated Lagrangian corrected SPH for explicit dynamic problems publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1859 – volume: 20 start-page: 181 issue: 3 year: 2010 ident: 10.1016/j.jfluidstructs.2018.04.012_b53 article-title: Simulations of hydro-elastic impacts using a parallel SPH model publication-title: Int. J. Offshore Polar Eng. – volume: 230 start-page: 3093 issue: 8 year: 2011 ident: 10.1016/j.jfluidstructs.2018.04.012_b42 article-title: Enhancement of stability and accuracy of the moving particle semi-implicit method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.01.009 – volume: 146 start-page: 371 year: 1996 ident: 10.1016/j.jfluidstructs.2018.04.012_b59 article-title: Smoothed particle hydrodynamics: Some recent improvements and applications publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2013 ident: 10.1016/j.jfluidstructs.2018.04.012_b1 – volume: 14 issue: 4 year: 2017 ident: 10.1016/j.jfluidstructs.2018.04.012_b19 article-title: Dual-support smoothed particle hydrodynamics for elastic mechanics publication-title: Int. J. Comput. Math. – year: 1997 ident: 10.1016/j.jfluidstructs.2018.04.012_b12 – volume: 146 start-page: 371 year: 1998 ident: 10.1016/j.jfluidstructs.2018.04.012_b46 article-title: Consistent pseudo-derivatives in meshless methods publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(96)01234-0 – volume: 52 start-page: 1203 issue: 11 year: 2001 ident: 10.1016/j.jfluidstructs.2018.04.012_b8 article-title: Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.242 – volume: 332 start-page: 236 year: 2017 ident: 10.1016/j.jfluidstructs.2018.04.012_b44 article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.12.005 – volume: 55 start-page: 697 issue: 4 year: 2015 ident: 10.1016/j.jfluidstructs.2018.04.012_b50 article-title: A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid–structure interaction problems with large interface motion publication-title: Comput. Mech. doi: 10.1007/s00466-015-1131-8 – volume: 48 start-page: 1445 year: 2000 ident: 10.1016/j.jfluidstructs.2018.04.012_b61 article-title: Normalized SPH with stress points publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9 – volume: 188 start-page: 95 year: 2017 ident: 10.1016/j.jfluidstructs.2018.04.012_b68 article-title: Coupled fluid–structure computational methods for aircraft ditching simulations: Comparison of ALE-FE and SPH-FE approaches publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2017.04.004 – volume: 43 start-page: 125 year: 2008 ident: 10.1016/j.jfluidstructs.2018.04.012_b39 article-title: Interaction between an elastic structure and free-surface flows: Experimental versus numerical comparisons using the PFEM publication-title: Comput. Mech. doi: 10.1007/s00466-008-0245-7 – volume: 82 start-page: 158 year: 2013 ident: 10.1016/j.jfluidstructs.2018.04.012_b76 article-title: A short note on dynamic stabilization of moving particle semi-implicit method publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2013.05.001 – year: 2012 ident: 10.1016/j.jfluidstructs.2018.04.012_b23 – year: 2000 ident: 10.1016/j.jfluidstructs.2018.04.012_b35 – volume: 7 start-page: 299 issue: 3 year: 2017 ident: 10.1016/j.jfluidstructs.2018.04.012_b43 article-title: Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D Hydroelastic slamming publication-title: Ocean Syst. Eng. – volume: 70 start-page: 1 year: 2017 ident: 10.1016/j.jfluidstructs.2018.04.012_b52 article-title: On the filtering of acoustic components in weakly-compressible SPH simulations publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2017.01.005 – volume: 48 start-page: 155 issue: 2 year: 2011 ident: 10.1016/j.jfluidstructs.2018.04.012_b45 article-title: Current achievements and future perspectives on particle simulation technologies for fluid dynamics and heat transfer publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.2011.9711690 – volume: 1 start-page: 245 issue: 3 year: 2014 ident: 10.1016/j.jfluidstructs.2018.04.012_b34 article-title: Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems publication-title: Comput. Part. Mech. doi: 10.1007/s40571-014-0024-5 – volume: 71 start-page: 16 issue: 701 year: 2005 ident: 10.1016/j.jfluidstructs.2018.04.012_b69 article-title: Dynamic Analysis of elastic solids by MPS method publication-title: Trans. Japan Soc. Mech. Eng. Ser. A doi: 10.1299/kikaia.71.16 |
| SSID | ssj0009431 |
| Score | 2.296683 |
| Snippet | A fully-Lagrangian particle-based computational method is developed for simulation of incompressible Fluid, non-linear Structure Interaction (FSI) with... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 325 |
| SubjectTerms | Dual Particle Dynamics Fluid–Structure Interaction Moving Least Squares Moving Particle Semi-Implicit Stress point integration |
| Title | Enhanced particle method with stress point integration for simulation of incompressible fluid-nonlinear elastic structure interaction |
| URI | https://dx.doi.org/10.1016/j.jfluidstructs.2018.04.012 |
| Volume | 81 |
| WOSCitedRecordID | wos000440771500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-8622 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009431 issn: 0889-9746 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLkJwQDzF8pIluKGgJHZqmwPSChUKhxWHReotcvxQU5Wkastq9wfwi_iD2Bnn0YWVChKXqErraZz5Op46M9-H0CviVhEZFyrSSsuIEm6jwlgTyaKIUy2pIQVtxCbY6Smfz8WX0ehn2wtzvmJVxS8uxPq_utqdc872rbN_4e7OqDvhXjunu6Nzuzse5PhptYCn-uvwZlCJDtXo0Buyrstq13FFtOWG2_JbUPMCJglfb97Uyfr2Krv6XuqoAmoNuXltXN7t2V6BgdY_h_DmNtAocU3O29gAVuhuWN-AIldyIUGkYFZvTdkXCCzk5WWQ3S4K2Y34WO_qZlto5uLSdlEOtzAS3hXQ9ZFORO6PzWQYlkHJJcRVAt3RYYkmIEHwW_SHjYjlmyXMppmHp2RPeENnG-q19zi3r6yFXYViW_y2zPeM5d5YHtM89srWRynLBB-jo5NP0_nnnuuZggxmO6ub6GVfVnjttf05MRokO2d30Z3gMXwCALqHRqa6j24PuCsfoB8tznCLMww4wx5nGHCGG5zhAc6wwxnucYZri_dxhq_gDAec4Q4weICzh-jrh-nZ-1kUND0iRVK2c4uvIJobIXRhrRApczdJaCmZshmVXBpubSxiYXiqJ4SolCpNEpvpOLXMqoI8QmN3BeYxwhMjLefc6MSTOCpSMMJYluhUU81VRo_R2_aG5ioQ3nvdlVV-gHOPEe0Gr4H35bBh71rP5SGFhdQ0dxg9xMCTf_vep-hW_8N6hsbuE-Y5uqHOd-V28yIA9Bcx2dYS |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+particle+method+with+stress+point+integration+for+simulation+of+incompressible+fluid-nonlinear+elastic+structure+interaction&rft.jtitle=Journal+of+fluids+and+structures&rft.au=Falahaty%2C+Hosein&rft.au=Khayyer%2C+Abbas&rft.au=Gotoh%2C+Hitoshi&rft.date=2018-08-01&rft.issn=0889-9746&rft.volume=81&rft.spage=325&rft.epage=360&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2018.04.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfluidstructs_2018_04_012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon |