Enhanced particle method with stress point integration for simulation of incompressible fluid-nonlinear elastic structure interaction

A fully-Lagrangian particle-based computational method is developed for simulation of incompressible Fluid, non-linear Structure Interaction (FSI) with incorporation of stress point integration (Randles and Libersky, 2005) to resolve instabilities related to zero-energy modes. Structural dynamics is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of fluids and structures Ročník 81; s. 325 - 360
Hlavní autoři: Falahaty, Hosein, Khayyer, Abbas, Gotoh, Hitoshi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2018
Témata:
ISSN:0889-9746, 1095-8622
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A fully-Lagrangian particle-based computational method is developed for simulation of incompressible Fluid, non-linear Structure Interaction (FSI) with incorporation of stress point integration (Randles and Libersky, 2005) to resolve instabilities related to zero-energy modes. Structural dynamics is founded on discretization of the divergence of stress according to Moving Least Squares (MLS) method. The stress point integration is incorporated in calculation of structural dynamics, resulting in a Dual Particle Dynamics (DPD) structure model (Randles and Libersky, 2005). A structure model based on nodal integration is also considered for comparison and simply referred to as MLS. The DPD and MLS structure models are coupled with an enhanced projection-based Moving Particle Semi-implicit (MPS) method as the fluid model, resulting in DPD–MPS and MLS–MPS FSI solvers, respectively. The enhanced performance of DPD with respect to MLS is first shown through a set of tests for structure model. Then the superior performance of DPD–MPS FSI solver with respect to MLS–MPS one is demonstrated through a set of FSI benchmark tests. The present study also presents a new algorithm for fluid–structure coupling via components of stress tensors in surface boundary stress points. [Display omitted] •Stress point integration is utilized in particle-based modeling of FSI.•Nonlinear structure models with nodal and stress point integrations are compared.•The structure models are coupled with enhanced MPS-based fluid model.•By setting stress points on the boundaries, a new version of coupling is achieved.•Clear improvements are obtained in suppressing zero energy modes in FSI modeling.
AbstractList A fully-Lagrangian particle-based computational method is developed for simulation of incompressible Fluid, non-linear Structure Interaction (FSI) with incorporation of stress point integration (Randles and Libersky, 2005) to resolve instabilities related to zero-energy modes. Structural dynamics is founded on discretization of the divergence of stress according to Moving Least Squares (MLS) method. The stress point integration is incorporated in calculation of structural dynamics, resulting in a Dual Particle Dynamics (DPD) structure model (Randles and Libersky, 2005). A structure model based on nodal integration is also considered for comparison and simply referred to as MLS. The DPD and MLS structure models are coupled with an enhanced projection-based Moving Particle Semi-implicit (MPS) method as the fluid model, resulting in DPD–MPS and MLS–MPS FSI solvers, respectively. The enhanced performance of DPD with respect to MLS is first shown through a set of tests for structure model. Then the superior performance of DPD–MPS FSI solver with respect to MLS–MPS one is demonstrated through a set of FSI benchmark tests. The present study also presents a new algorithm for fluid–structure coupling via components of stress tensors in surface boundary stress points. [Display omitted] •Stress point integration is utilized in particle-based modeling of FSI.•Nonlinear structure models with nodal and stress point integrations are compared.•The structure models are coupled with enhanced MPS-based fluid model.•By setting stress points on the boundaries, a new version of coupling is achieved.•Clear improvements are obtained in suppressing zero energy modes in FSI modeling.
Author Gotoh, Hitoshi
Falahaty, Hosein
Khayyer, Abbas
Author_xml – sequence: 1
  givenname: Hosein
  orcidid: 0000-0001-5542-719X
  surname: Falahaty
  fullname: Falahaty, Hosein
– sequence: 2
  givenname: Abbas
  surname: Khayyer
  fullname: Khayyer, Abbas
  email: khayyer@particle.kuciv.kyoto-u.ac.jp
– sequence: 3
  givenname: Hitoshi
  surname: Gotoh
  fullname: Gotoh, Hitoshi
BookMark eNqNkc1qAyEUhaWk0CTtOwhdz1SdSUbpKoT0BwLdtGsxem0MkzGoaekD9L3rZLppV1nI5aLn45zjBI063wFCt5SUlND53a7c2fboTEzhqFMsGaG8JHVJKLtAY0rErOBzxkZoTDgXhWjq-RWaxLgjhIi6omP0veq2qtNg8EGF5HQLeA9p6w3-dGmLMxhixAfvuoTzgfegkvMdtj7g6PbHdli9zbfa7w_9c7fJlJOvIvttXQcqYGhVzHw8WD0GOOGC0r3-Gl1a1Ua4-Z1T9Pawel0-FeuXx-flYl3oijWp4I2oDAchzMZaIViTQwmjVKPtrFZcAbeWCCKAMzOvKs1qbSpqZ4Yw21i9qabofuDq4GMMYOUhuL0KX5IS2Tcqd_JPo7JvVJJa5kazevFPrV065U9BufZMxmpgQI754SDIqB30H-AC6CSNd2dxfgDKLqaI
CitedBy_id crossref_primary_10_1016_j_cma_2023_116412
crossref_primary_10_1016_j_apor_2021_102734
crossref_primary_10_1016_j_euromechsol_2019_01_026
crossref_primary_10_1016_j_enganabound_2019_03_033
crossref_primary_10_1016_j_jfluidstructs_2019_06_004
crossref_primary_10_1007_s42286_020_00037_7
crossref_primary_10_1016_j_oceaneng_2021_109449
crossref_primary_10_1016_j_cma_2020_113166
crossref_primary_10_1007_s13344_019_0004_x
crossref_primary_10_1016_j_camwa_2023_06_008
crossref_primary_10_1016_j_jfluidstructs_2019_07_005
crossref_primary_10_1016_j_oceaneng_2021_108870
crossref_primary_10_1016_j_oceaneng_2020_108552
crossref_primary_10_1016_j_euromechflu_2022_02_014
crossref_primary_10_1016_j_cma_2020_113538
Cites_doi 10.1016/j.jfluidstructs.2016.05.012
10.1016/j.jfluidstructs.2012.02.005
10.1016/j.apor.2013.10.002
10.1016/j.compstruc.2007.01.002
10.1016/j.compfluid.2014.06.028
10.2183/pjab.93.034
10.1007/BF02123482
10.1016/j.cma.2003.12.018
10.1006/jcph.1995.1010
10.1016/j.compstruc.2004.11.027
10.1007/s10444-004-1817-5
10.1016/j.cma.2016.03.027
10.1016/j.jfluidstructs.2014.07.007
10.1016/j.oceaneng.2013.09.007
10.1016/j.oceaneng.2014.04.016
10.1002/nme.2670
10.1002/nme.4451
10.1016/j.compfluid.2016.05.029
10.1016/j.coastaleng.2008.10.004
10.1016/S0045-7825(99)00441-7
10.1002/nme.4512
10.1016/S0898-1221(01)00290-5
10.1016/j.oceaneng.2016.04.006
10.1080/00221686.2015.1119209
10.1201/b18179-12
10.1016/j.coastaleng.2005.10.007
10.1016/j.jfluidstructs.2013.02.023
10.1016/j.cpc.2017.04.005
10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U
10.1007/s40722-016-0049-3
10.1016/j.apor.2010.01.001
10.1016/j.cma.2009.04.001
10.1016/j.compstruc.2007.01.019
10.1016/j.cma.2003.12.005
10.1080/00221680509500122
10.1016/j.jfluidstructs.2015.12.002
10.1016/S0045-7825(01)00254-7
10.1016/j.cma.2016.12.037
10.1016/j.compstruc.2016.08.012
10.1016/S0045-7825(99)00051-1
10.1016/j.oceaneng.2012.06.031
10.1016/j.jcp.2017.02.016
10.1002/nme.4327
10.1016/0045-7949(95)00059-P
10.1002/nme.1859
10.1016/j.jcp.2011.01.009
10.1016/S0045-7825(96)01234-0
10.1002/nme.242
10.1016/j.jcp.2016.12.005
10.1007/s00466-015-1131-8
10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9
10.1016/j.compstruc.2017.04.004
10.1007/s00466-008-0245-7
10.1016/j.compfluid.2013.05.001
10.1016/j.jfluidstructs.2017.01.005
10.1080/18811248.2011.9711690
10.1007/s40571-014-0024-5
10.1299/kikaia.71.16
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jfluidstructs.2018.04.012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1095-8622
EndPage 360
ExternalDocumentID 10_1016_j_jfluidstructs_2018_04_012
S0889974617305303
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~A~
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c327t-8793d8e99dbff99278899daa7cf54a8ae8ff0909e82d633c24cd31f5d02f7fcb3
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440771500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0889-9746
IngestDate Tue Nov 18 21:55:55 EST 2025
Sat Nov 29 07:14:37 EST 2025
Fri Feb 23 02:47:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Moving Least Squares
Moving Particle Semi-Implicit
Dual Particle Dynamics
Fluid–Structure Interaction
Stress point integration
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-8793d8e99dbff99278899daa7cf54a8ae8ff0909e82d633c24cd31f5d02f7fcb3
ORCID 0000-0001-5542-719X
PageCount 36
ParticipantIDs crossref_primary_10_1016_j_jfluidstructs_2018_04_012
crossref_citationtrail_10_1016_j_jfluidstructs_2018_04_012
elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2018_04_012
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationTitle Journal of fluids and structures
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Timoshenko, Woinowsky-Krieger (b74) 1959
Shadloo, Oger, Le Touzé (b66) 2016; 136
Gray, Monaghan, Swift (b32) 2001; 190
Khayyer, Gotoh (b40) 2009; 56
Randles, Libersky (b59) 1996; 146
Lee, Noguchi, Koshizuka (b48) 2007; 85
Holzapfel (b35) 2000
Khayyer, Gotoh, Shimizu (b44) 2017; 332
Bonet, Wood (b12) 1997
Randles, Libersky (b62) 2005; 83
Chow, A., Rogers, B.D., Stansby, P.K., Lind, S., 2016. Converting DualSPHysics to solve strictly Incompressible SPH. 2nd DualSPHysics User Workshop, 6–7 December 2016.
Sun, Colagrossi, Marrone, Zhang (b71) 2016; 305
Zhang, Ming, Wang (b85) 2013; 43
Wendland (b81) 1995; 4
Khayyer, Gotoh (b41) 2010; 32
Gotoh, Okayasu (b28) 2017; 93
Bonet, Kulasegaram (b8) 2001; 52
Gotoh, Sakai (b30) 2006; 53
Antoci (b2) 2006
Eghtesad, Shafiei, Mahzoon (b22) 2012; 30
Belytschko, Guo, Liu, Xiao (b5) 2000; 48
Hwang, Khayyer, Gotoh, Park (b36) 2014; 50
Dyka, Ingel (b20) 1994
Violeau (b79) 2012
Shao, Gotoh (b67) 2005; 43
Hwang, S.C., Khayyer, A., Gotoh, H., Park, J.C., 2015. Simulations of incompressible fluid flow-elastic structure interactions by a coupled Fully Lagrangian solver. In: Proceedings of the Twenty-fifth International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21–26.
Sanchez, Randles (b64) 2012; 91
Xiao, Belytschko (b83) 2005; 23
Battley, M., Allen, T., Pehrson, P., Stenius, I., Rosen, A., 2009. Effects of panel stiffness on slamming responses of composite hull panels. In: 17th International Conference on Composite Materials, Edinburgh International Convention Centre (EICC), Edinburgh, UK.
Krongauz, Belytschko (b46) 1998; 146
Landa, Lifshitz (b47) 1970
Khayyer, Gotoh, Falahaty, Shimizu, Nishijima (b43) 2017; 7
Rabczuk, Belytschko, Xiao (b56) 2004; 193
Dai, Ren, Zhuang, Rabczuk (b19) 2017; 14
Khayyer, Gotoh (b42) 2011; 230
Yang, Jones, McCue (b84) 2012; 55
Oger, Brosset, Guilcher, Jacquin, Deuff, Le Touzé (b53) 2010; 20
Rafiee, Thiagarajan (b58) 2009; 198
Chen, Hillman, Rüter (b16) 2013; 95
Dyka, Ingel (b21) 1995; 57
Li, Leduc, Combescure, Leboeuf (b49) 2014; 103
Gotoh, Khayyer (b27) 2016; 2
Sun, Djidjeli, Xing, Cheng (b72) 2016; 6
Song, Koshizuka, Oka (b69) 2005; 71
Bonet, Kulasegaram, Rodriguez-Paz, Profit (b10) 2004; 193
Gotoh, Shibahara, Sakai (b31) 2001; 9
Paik, Carrica (b55) 2014; 84
Rabczuk, Gracie, Song, Belytschko (b57) 2010; 81
Bonet, Kulasegaram (b9) 2002; 126
Caleyron, Combescure, Faucher, Potapov (b13) 2013; 39
Fourey (b23) 2012
Cercos-Pita, Antuono, Colagrossi, Souto-Iglesias (b15) 2017; 317
Gong, Shao, Hua, Wang, Tan (b26) 2016; 65
Koshizuka (b45) 2011; 48
Wu, Dongmin, Wright (b82) 2016; 177
Trask, N.B., Kim, K., Tartakovsky, A.P., Perego, M., Parks, M.L., 2015. A highly-scalable implicit SPH code for simulating single-and multi-phase flows in geometrically complex bounded domains. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), SAND2015-5407C.
Chen, Hu, Puso, Wu, Zhang (b17) 2007
Fourey, Hermange, Oger (b24) 2017; 217
Vignjevic, Campbell, Libersky (b78) 2000; 184
Meringolo, Colagrossi, Marrone, Aristodemo (b52) 2017; 70
Paik (b54) 2010
Fourey, Oger, Touzé, Alessandrini (b25) 2010; 10
Liu, Liu (b51) 2003
Belytschko, Xiao (b7) 2000; 43
Violeau, Rogers (b80) 2016; 54
Stenius, Rosén, Battley, Allen (b70) 2013; 74
Siemann, Langrand (b68) 2017; 188
Swegle, Hicks, Attaway (b73) 1995; 116
Allen (b1) 2013
Bonet, Lok (b11) 1999; 180
Guo, X., Rogers, B.D., 2015. Developing highly scalable 3-D incompressible SPH. ARCHER Community, ISPH embedded CSE Report.
Antoci, Gallati, Sibilla (b3) 2007; 85
Vidal, Bonet, Huerta (b77) 2007; 69
Sanchez, Randles (b65) 2013; 94
Zhilun (b87) 1990
Tsuruta, Khayyer, Gotoh (b76) 2013; 82
Gotoh, Okayasu, Watanabe (b29) 2013
Idelsohn, Marti, Souto-Iglesias, Onate (b39) 2008; 43
Randles, Petschek, Libersky, Dyka (b63) 2003
Hwang, Park, Gotoh, Khayyer, Kang (b38) 2016; 118
Randles, Libersky (b61) 2000; 48
Zhang, Xiangyu, Adams (b86) 2017; 337
Li, Leduc, Nunez-Ramirez, Combescure, Marongiu (b50) 2015; 55
Camilleri, J., Temarel, P., Taunton, D., 2015. Two-dimensional numerical modelling of slamming impact loads on high-speed craft. In: 7th International Conference on Hydroelasticity in Marine Technology Split, Croatia, September.
Hillman, Chen, Chi (b34) 2014; 1
Allen (10.1016/j.jfluidstructs.2018.04.012_b1) 2013
Bonet (10.1016/j.jfluidstructs.2018.04.012_b9) 2002; 126
Song (10.1016/j.jfluidstructs.2018.04.012_b69) 2005; 71
Caleyron (10.1016/j.jfluidstructs.2018.04.012_b13) 2013; 39
Swegle (10.1016/j.jfluidstructs.2018.04.012_b73) 1995; 116
Dyka (10.1016/j.jfluidstructs.2018.04.012_b20) 1994
Fourey (10.1016/j.jfluidstructs.2018.04.012_b24) 2017; 217
Gotoh (10.1016/j.jfluidstructs.2018.04.012_b28) 2017; 93
Koshizuka (10.1016/j.jfluidstructs.2018.04.012_b45) 2011; 48
Bonet (10.1016/j.jfluidstructs.2018.04.012_b11) 1999; 180
Siemann (10.1016/j.jfluidstructs.2018.04.012_b68) 2017; 188
Lee (10.1016/j.jfluidstructs.2018.04.012_b48) 2007; 85
Landa (10.1016/j.jfluidstructs.2018.04.012_b47) 1970
Meringolo (10.1016/j.jfluidstructs.2018.04.012_b52) 2017; 70
Vignjevic (10.1016/j.jfluidstructs.2018.04.012_b78) 2000; 184
Liu (10.1016/j.jfluidstructs.2018.04.012_b51) 2003
Antoci (10.1016/j.jfluidstructs.2018.04.012_b2) 2006
Khayyer (10.1016/j.jfluidstructs.2018.04.012_b42) 2011; 230
Dyka (10.1016/j.jfluidstructs.2018.04.012_b21) 1995; 57
10.1016/j.jfluidstructs.2018.04.012_b37
Sun (10.1016/j.jfluidstructs.2018.04.012_b72) 2016; 6
Vidal (10.1016/j.jfluidstructs.2018.04.012_b77) 2007; 69
Bonet (10.1016/j.jfluidstructs.2018.04.012_b12) 1997
10.1016/j.jfluidstructs.2018.04.012_b75
Gotoh (10.1016/j.jfluidstructs.2018.04.012_b31) 2001; 9
10.1016/j.jfluidstructs.2018.04.012_b33
Sanchez (10.1016/j.jfluidstructs.2018.04.012_b64) 2012; 91
Khayyer (10.1016/j.jfluidstructs.2018.04.012_b43) 2017; 7
Wendland (10.1016/j.jfluidstructs.2018.04.012_b81) 1995; 4
Timoshenko (10.1016/j.jfluidstructs.2018.04.012_b74) 1959
Li (10.1016/j.jfluidstructs.2018.04.012_b49) 2014; 103
Antoci (10.1016/j.jfluidstructs.2018.04.012_b3) 2007; 85
Bonet (10.1016/j.jfluidstructs.2018.04.012_b10) 2004; 193
Hwang (10.1016/j.jfluidstructs.2018.04.012_b38) 2016; 118
Khayyer (10.1016/j.jfluidstructs.2018.04.012_b40) 2009; 56
Li (10.1016/j.jfluidstructs.2018.04.012_b50) 2015; 55
Rafiee (10.1016/j.jfluidstructs.2018.04.012_b58) 2009; 198
Shadloo (10.1016/j.jfluidstructs.2018.04.012_b66) 2016; 136
Gray (10.1016/j.jfluidstructs.2018.04.012_b32) 2001; 190
Randles (10.1016/j.jfluidstructs.2018.04.012_b59) 1996; 146
Wu (10.1016/j.jfluidstructs.2018.04.012_b82) 2016; 177
10.1016/j.jfluidstructs.2018.04.012_b4
Shao (10.1016/j.jfluidstructs.2018.04.012_b67) 2005; 43
Krongauz (10.1016/j.jfluidstructs.2018.04.012_b46) 1998; 146
Hillman (10.1016/j.jfluidstructs.2018.04.012_b34) 2014; 1
Stenius (10.1016/j.jfluidstructs.2018.04.012_b70) 2013; 74
Zhang (10.1016/j.jfluidstructs.2018.04.012_b85) 2013; 43
Randles (10.1016/j.jfluidstructs.2018.04.012_b61) 2000; 48
Violeau (10.1016/j.jfluidstructs.2018.04.012_b79) 2012
Cercos-Pita (10.1016/j.jfluidstructs.2018.04.012_b15) 2017; 317
Zhilun (10.1016/j.jfluidstructs.2018.04.012_b87) 1990
Gotoh (10.1016/j.jfluidstructs.2018.04.012_b27) 2016; 2
Khayyer (10.1016/j.jfluidstructs.2018.04.012_b41) 2010; 32
Xiao (10.1016/j.jfluidstructs.2018.04.012_b83) 2005; 23
Yang (10.1016/j.jfluidstructs.2018.04.012_b84) 2012; 55
Paik (10.1016/j.jfluidstructs.2018.04.012_b55) 2014; 84
Belytschko (10.1016/j.jfluidstructs.2018.04.012_b5) 2000; 48
Randles (10.1016/j.jfluidstructs.2018.04.012_b62) 2005; 83
Oger (10.1016/j.jfluidstructs.2018.04.012_b53) 2010; 20
Gong (10.1016/j.jfluidstructs.2018.04.012_b26) 2016; 65
Gotoh (10.1016/j.jfluidstructs.2018.04.012_b29) 2013
Chen (10.1016/j.jfluidstructs.2018.04.012_b17) 2007
Dai (10.1016/j.jfluidstructs.2018.04.012_b19) 2017; 14
Idelsohn (10.1016/j.jfluidstructs.2018.04.012_b39) 2008; 43
10.1016/j.jfluidstructs.2018.04.012_b14
Belytschko (10.1016/j.jfluidstructs.2018.04.012_b7) 2000; 43
Fourey (10.1016/j.jfluidstructs.2018.04.012_b25) 2010; 10
Tsuruta (10.1016/j.jfluidstructs.2018.04.012_b76) 2013; 82
Fourey (10.1016/j.jfluidstructs.2018.04.012_b23) 2012
Rabczuk (10.1016/j.jfluidstructs.2018.04.012_b57) 2010; 81
Paik (10.1016/j.jfluidstructs.2018.04.012_b54) 2010
10.1016/j.jfluidstructs.2018.04.012_b18
Gotoh (10.1016/j.jfluidstructs.2018.04.012_b30) 2006; 53
Sanchez (10.1016/j.jfluidstructs.2018.04.012_b65) 2013; 94
Bonet (10.1016/j.jfluidstructs.2018.04.012_b8) 2001; 52
Violeau (10.1016/j.jfluidstructs.2018.04.012_b80) 2016; 54
Sun (10.1016/j.jfluidstructs.2018.04.012_b71) 2016; 305
Holzapfel (10.1016/j.jfluidstructs.2018.04.012_b35) 2000
Hwang (10.1016/j.jfluidstructs.2018.04.012_b36) 2014; 50
Zhang (10.1016/j.jfluidstructs.2018.04.012_b86) 2017; 337
Khayyer (10.1016/j.jfluidstructs.2018.04.012_b44) 2017; 332
Randles (10.1016/j.jfluidstructs.2018.04.012_b63) 2003
Rabczuk (10.1016/j.jfluidstructs.2018.04.012_b56) 2004; 193
Chen (10.1016/j.jfluidstructs.2018.04.012_b16) 2013; 95
Eghtesad (10.1016/j.jfluidstructs.2018.04.012_b22) 2012; 30
References_xml – volume: 103
  start-page: 6
  year: 2014
  end-page: 17
  ident: b49
  article-title: Coupling of SPH-ALE method and finite element method for transient fluid–structure interaction
  publication-title: Comput. & Fluids
– reference: Guo, X., Rogers, B.D., 2015. Developing highly scalable 3-D incompressible SPH. ARCHER Community, ISPH embedded CSE Report.
– volume: 48
  start-page: 155
  year: 2011
  end-page: 168
  ident: b45
  article-title: Current achievements and future perspectives on particle simulation technologies for fluid dynamics and heat transfer
  publication-title: J. Nucl. Sci. Technol.
– volume: 70
  start-page: 1
  year: 2017
  end-page: 23
  ident: b52
  article-title: On the filtering of acoustic components in weakly-compressible SPH simulations
  publication-title: J. Fluids Struct.
– volume: 217
  start-page: 66
  year: 2017
  end-page: 81
  ident: b24
  article-title: An efficient FSI coupling strategy between Smoothed Particle Hydrodynamics and Finite Element methods
  publication-title: Comput. Phys. Comm.
– volume: 6
  start-page: 295
  year: 2016
  end-page: 323
  ident: b72
  article-title: Coupled MPS-modal superposition method for 2D non-linear fluid–structure interaction problems with free surface
  publication-title: J. Fluids Struct.
– volume: 10
  year: 2010
  ident: b25
  article-title: Violent fluid-structure interaction simulations using a coupled SPH/FEM method
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 32
  start-page: 124
  year: 2010
  end-page: 131
  ident: b41
  article-title: A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method
  publication-title: Appl. Ocean Res.
– volume: 30
  start-page: 141
  year: 2012
  end-page: 158
  ident: b22
  article-title: A new fluid–solid interface algorithm for simulating fluid structure problems in FGM plates
  publication-title: J. Fluids Struct.
– volume: 93
  start-page: 525
  year: 2017
  end-page: 546
  ident: b28
  article-title: Computational wave dynamics for innovative design of coastal structures
  publication-title: Proc. Japan Acad. Ser. B
– volume: 23
  start-page: 171
  year: 2005
  end-page: 190
  ident: b83
  article-title: Material stability analysis of particle methods
  publication-title: Adv. Comput. Math.
– volume: 74
  start-page: 1
  year: 2013
  end-page: 15
  ident: b70
  article-title: Experimental hydroelastic characterization of slamming loaded marine panels
  publication-title: Ocean Eng.
– volume: 57
  start-page: 573
  year: 1995
  end-page: 580
  ident: b21
  article-title: An approach for tensile instability in smoothed particle hydrodynamics
  publication-title: Comput. Struct.
– volume: 1
  start-page: 245
  year: 2014
  end-page: 256
  ident: b34
  article-title: Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems
  publication-title: Comput. Part. Mech.
– volume: 55
  start-page: 697
  year: 2015
  end-page: 718
  ident: b50
  article-title: A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid–structure interaction problems with large interface motion
  publication-title: Comput. Mech.
– volume: 9
  start-page: 339
  year: 2001
  end-page: 347
  ident: b31
  article-title: Sub-particle-scale turbulence model for the MPS method -Lagrangian flow model for hydraulic engineering
  publication-title: Comput. Fluid Dynam. J.
– volume: 71
  start-page: 16
  year: 2005
  end-page: 22
  ident: b69
  article-title: Dynamic Analysis of elastic solids by MPS method
  publication-title: Trans. Japan Soc. Mech. Eng. Ser. A
– volume: 2
  start-page: 251
  year: 2016
  end-page: 278
  ident: b27
  article-title: Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering
  publication-title: J. Ocean Eng. Marine Energy
– volume: 146
  start-page: 371
  year: 1996
  end-page: 386
  ident: b59
  article-title: Smoothed particle hydrodynamics: Some recent improvements and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 53
  start-page: 171
  year: 2006
  end-page: 179
  ident: b30
  article-title: Key issues in the particle method for computation of wave breaking
  publication-title: Coast. Eng.
– volume: 14
  year: 2017
  ident: b19
  article-title: Dual-support smoothed particle hydrodynamics for elastic mechanics
  publication-title: Int. J. Comput. Math.
– volume: 118
  start-page: 227
  year: 2016
  end-page: 241
  ident: b38
  article-title: Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid–structure interaction analysis method
  publication-title: Ocean Eng.
– volume: 180
  start-page: 97
  year: 1999
  end-page: 115
  ident: b11
  article-title: Variational and momentum preservation aspects of smooth particle hydrodynamic formulations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 332
  start-page: 236
  year: 2017
  end-page: 256
  ident: b44
  article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context
  publication-title: J. Comput. Phys.
– volume: 48
  start-page: 1359
  year: 2000
  end-page: 1400
  ident: b5
  article-title: A unified stability analysis of meshless particle methods
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 85
  start-page: 688
  year: 2007
  end-page: 697
  ident: b48
  article-title: Fluid–shell structure interaction analysis by coupled particle and finite element method
  publication-title: Comput. Struct.
– volume: 91
  start-page: 1227
  year: 2012
  end-page: 1250
  ident: b64
  article-title: Dynamic failure simulation of quasi-brittle material in dual particle dynamics
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 52
  start-page: 1203
  year: 2001
  end-page: 1220
  ident: b8
  article-title: Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 43
  start-page: 125
  year: 2008
  end-page: 132
  ident: b39
  article-title: Interaction between an elastic structure and free-surface flows: Experimental versus numerical comparisons using the PFEM
  publication-title: Comput. Mech.
– year: 2000
  ident: b35
  article-title: Non-Linear Solid Mechanics: A Continuum Approach for Engineering
– volume: 43
  start-page: 276
  year: 2005
  end-page: 289
  ident: b67
  article-title: Turbulence particle models for tracking free surfaces
  publication-title: J. Hydraul. Res.
– volume: 82
  start-page: 158
  year: 2013
  end-page: 164
  ident: b76
  article-title: A short note on dynamic stabilization of moving particle semi-implicit method
  publication-title: Comput. & Fluids
– volume: 20
  start-page: 181
  year: 2010
  end-page: 189
  ident: b53
  article-title: Simulations of hydro-elastic impacts using a parallel SPH model
  publication-title: Int. J. Offshore Polar Eng.
– volume: 83
  start-page: 1476
  year: 2005
  end-page: 1486
  ident: b62
  article-title: Boundary conditions for a dual particle method
  publication-title: Comput. Struct.
– start-page: 7
  year: 1970
  ident: b47
  article-title: Elasticity, Course of Theoretical Physics
– volume: 230
  start-page: 3093
  year: 2011
  end-page: 3118
  ident: b42
  article-title: Enhancement of stability and accuracy of the moving particle semi-implicit method
  publication-title: J. Comput. Phys.
– reference: Trask, N.B., Kim, K., Tartakovsky, A.P., Perego, M., Parks, M.L., 2015. A highly-scalable implicit SPH code for simulating single-and multi-phase flows in geometrically complex bounded domains. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), SAND2015-5407C.
– volume: 81
  start-page: 48
  year: 2010
  end-page: 71
  ident: b57
  article-title: Immersed particle method for fluid–structure interaction
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 190
  start-page: 6641
  year: 2001
  end-page: 6662
  ident: b32
  article-title: SPH elastic dynamics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 1959
  ident: b74
  article-title: Theory of Plates and Shells
– volume: 69
  start-page: 2687
  year: 2007
  end-page: 2710
  ident: b77
  article-title: Stabilized updated Lagrangian corrected SPH for explicit dynamic problems
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 39
  start-page: 126
  year: 2013
  end-page: 153
  ident: b13
  article-title: SPH modeling of fluid–solid interaction for dynamic failure analysis of fluid-filled thin shells
  publication-title: J. Fluids Struct.
– volume: 184
  start-page: 67
  year: 2000
  end-page: 85
  ident: b78
  article-title: A treatment of zero-energy modes in the smoothed particle hydrodynamics method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 65
  start-page: 155
  year: 2016
  end-page: 179
  ident: b26
  article-title: Two-phase SPH simulation of fluid–structure interactions
  publication-title: J. Fluids Struct.
– volume: 48
  start-page: 1445
  year: 2000
  end-page: 1462
  ident: b61
  article-title: Normalized SPH with stress points
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 136
  start-page: 11
  year: 2016
  end-page: 34
  ident: b66
  article-title: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges
  publication-title: Comput. & Fluids
– reference: Camilleri, J., Temarel, P., Taunton, D., 2015. Two-dimensional numerical modelling of slamming impact loads on high-speed craft. In: 7th International Conference on Hydroelasticity in Marine Technology Split, Croatia, September.
– reference: Chow, A., Rogers, B.D., Stansby, P.K., Lind, S., 2016. Converting DualSPHysics to solve strictly Incompressible SPH. 2nd DualSPHysics User Workshop, 6–7 December 2016.
– volume: 193
  start-page: 1035
  year: 2004
  end-page: 1063
  ident: b56
  article-title: Stable particle methods based on Lagrangian kernels
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 43
  start-page: 223
  year: 2013
  end-page: 233
  ident: b85
  article-title: Coupled SPHS–BEM method for transient fluid–structure interaction and applications in underwater impacts
  publication-title: Appl. Ocean Res.
– volume: 56
  start-page: 419
  year: 2009
  end-page: 440
  ident: b40
  article-title: Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure
  publication-title: Coast. Eng.
– year: 2010
  ident: b54
  article-title: Simulation of fluid–structure interaction for surface ships with linear/non-linear deformations
– volume: 177
  start-page: 141
  year: 2016
  end-page: 161
  ident: b82
  article-title: A coupled SPH-DEM model for fluid–structure interaction problems with free-surface flow and structural failure
  publication-title: Comput. Struct.
– year: 2003
  ident: b51
  article-title: Smoothed Particle Hydrodynamics: A Meshfree Particle Method
– year: 2006
  ident: b2
  article-title: Simulazione numerica dell’ interazione fluido-struttura con la tecnica SPH
– start-page: 57
  year: 2007
  end-page: 75
  ident: b17
  article-title: Strain smoothing for stabilization and regularization of Galerkin meshfree methods
  publication-title: Meshfree Methods for Partial Differential Equations III
– volume: 43
  start-page: 329
  year: 2000
  end-page: 350
  ident: b7
  article-title: Stability analysis of particle methods with corrected derivatives
  publication-title: Comput. Math. Appl.
– year: 1990
  ident: b87
  article-title: Elastic Mechanics
– year: 2012
  ident: b23
  article-title: Développement d’une méthode de couplage fluide structure SPH Eléments Finis en vue de son application à l’hydrodynamique navale
– year: 1997
  ident: b12
  article-title: Non-Linear Continuum Mechanics for Finite Element Analysis
– volume: 116
  start-page: 123
  year: 1995
  end-page: 134
  ident: b73
  article-title: Smoothed particle hydrodynamics stability analysis
  publication-title: J. Comput. Phys.
– volume: 95
  start-page: 387
  year: 2013
  end-page: 418
  ident: b16
  article-title: An arbitrary order variationally consistent integration for Galerkin meshfree methods
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 146
  start-page: 371
  year: 1998
  end-page: 386
  ident: b46
  article-title: Consistent pseudo-derivatives in meshless methods
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 84
  start-page: 201
  year: 2014
  end-page: 212
  ident: b55
  article-title: Fluid–structure interaction for an elastic structure interacting with free surface in a rolling tank
  publication-title: Ocean Eng.
– reference: Battley, M., Allen, T., Pehrson, P., Stenius, I., Rosen, A., 2009. Effects of panel stiffness on slamming responses of composite hull panels. In: 17th International Conference on Composite Materials, Edinburgh International Convention Centre (EICC), Edinburgh, UK.
– start-page: 339
  year: 2003
  end-page: 357
  ident: b63
  article-title: Stability of DPD and SPH
  publication-title: Meshfree Methods for Partial Differential Equations. Proc, Bonn LNCSE
– volume: 305
  start-page: 849
  year: 2016
  end-page: 868
  ident: b71
  article-title: Detection of Lagrangian coherent structures in the SPH framework
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 193
  start-page: 1245
  year: 2004
  end-page: 1256
  ident: b10
  article-title: Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 198
  start-page: 2785
  year: 2009
  end-page: 2795
  ident: b58
  article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2012
  ident: b79
  article-title: Fluid Mechanics and the SPH Method, Theory and Applications
– volume: 50
  start-page: 497
  year: 2014
  end-page: 511
  ident: b36
  article-title: Development of a fully Lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems
  publication-title: J. Fluids Struct.
– volume: 188
  start-page: 95
  year: 2017
  end-page: 108
  ident: b68
  article-title: Coupled fluid–structure computational methods for aircraft ditching simulations: Comparison of ALE-FE and SPH-FE approaches
  publication-title: Comput. Struct.
– volume: 94
  start-page: 183
  year: 2013
  end-page: 203
  ident: b65
  article-title: A quasi-static dual particle method for solids based on dual particle dynamics
  publication-title: Internat. J. Numer. Methods Engrg.
– year: 2013
  ident: b1
  article-title: Mechanics of flexible composite hull panels subjected to water impacts
– volume: 55
  start-page: 136
  year: 2012
  end-page: 147
  ident: b84
  article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model
  publication-title: Ocean Eng.
– volume: 54
  start-page: 1
  year: 2016
  end-page: 26
  ident: b80
  article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future
  publication-title: J. Hydraul. Res.
– reference: Hwang, S.C., Khayyer, A., Gotoh, H., Park, J.C., 2015. Simulations of incompressible fluid flow-elastic structure interactions by a coupled Fully Lagrangian solver. In: Proceedings of the Twenty-fifth International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21–26.
– volume: 126
  start-page: 133
  year: 2002
  end-page: 155
  ident: b9
  article-title: A simplified approach to enhance the performance of smooth particle hydrodynamics methods
  publication-title: Appl. Math. Comput.
– year: 2013
  ident: b29
  article-title: Computational Wave Dynamics (Advanced Series on Ocean Engineering)
– volume: 7
  start-page: 299
  year: 2017
  end-page: 318
  ident: b43
  article-title: Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D Hydroelastic slamming
  publication-title: Ocean Syst. Eng.
– volume: 85
  start-page: 879
  year: 2007
  end-page: 890
  ident: b3
  article-title: Numerical simulation of fluid–structure interaction by SPH
  publication-title: Comput. Struct.
– year: 1994
  ident: b20
  article-title: Addressing Tension Instability in SPH Method
– volume: 337
  start-page: 216
  year: 2017
  end-page: 232
  ident: b86
  article-title: A generalized transport-velocity formulation for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 317
  start-page: 771
  year: 2017
  end-page: 791
  ident: b15
  article-title: SPH energy conservation for fluid-solid interactions
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 4
  start-page: 389
  year: 1995
  end-page: 396
  ident: b81
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv. Comput. Math.
– volume: 10
  issue: 1
  year: 2010
  ident: 10.1016/j.jfluidstructs.2018.04.012_b25
  article-title: Violent fluid-structure interaction simulations using a coupled SPH/FEM method
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 65
  start-page: 155
  year: 2016
  ident: 10.1016/j.jfluidstructs.2018.04.012_b26
  article-title: Two-phase SPH simulation of fluid–structure interactions
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2016.05.012
– volume: 9
  start-page: 339
  issue: 4
  year: 2001
  ident: 10.1016/j.jfluidstructs.2018.04.012_b31
  article-title: Sub-particle-scale turbulence model for the MPS method -Lagrangian flow model for hydraulic engineering
  publication-title: Comput. Fluid Dynam. J.
– volume: 30
  start-page: 141
  year: 2012
  ident: 10.1016/j.jfluidstructs.2018.04.012_b22
  article-title: A new fluid–solid interface algorithm for simulating fluid structure problems in FGM plates
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2012.02.005
– ident: 10.1016/j.jfluidstructs.2018.04.012_b18
– ident: 10.1016/j.jfluidstructs.2018.04.012_b37
– year: 2003
  ident: 10.1016/j.jfluidstructs.2018.04.012_b51
– year: 2006
  ident: 10.1016/j.jfluidstructs.2018.04.012_b2
– ident: 10.1016/j.jfluidstructs.2018.04.012_b4
– year: 1994
  ident: 10.1016/j.jfluidstructs.2018.04.012_b20
– volume: 43
  start-page: 223
  year: 2013
  ident: 10.1016/j.jfluidstructs.2018.04.012_b85
  article-title: Coupled SPHS–BEM method for transient fluid–structure interaction and applications in underwater impacts
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2013.10.002
– volume: 85
  start-page: 879
  year: 2007
  ident: 10.1016/j.jfluidstructs.2018.04.012_b3
  article-title: Numerical simulation of fluid–structure interaction by SPH
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.01.002
– volume: 103
  start-page: 6
  year: 2014
  ident: 10.1016/j.jfluidstructs.2018.04.012_b49
  article-title: Coupling of SPH-ALE method and finite element method for transient fluid–structure interaction
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2014.06.028
– start-page: 339
  year: 2003
  ident: 10.1016/j.jfluidstructs.2018.04.012_b63
  article-title: Stability of DPD and SPH
– volume: 93
  start-page: 525
  issue: 9
  year: 2017
  ident: 10.1016/j.jfluidstructs.2018.04.012_b28
  article-title: Computational wave dynamics for innovative design of coastal structures
  publication-title: Proc. Japan Acad. Ser. B
  doi: 10.2183/pjab.93.034
– volume: 4
  start-page: 389
  year: 1995
  ident: 10.1016/j.jfluidstructs.2018.04.012_b81
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02123482
– ident: 10.1016/j.jfluidstructs.2018.04.012_b75
– volume: 193
  start-page: 1245
  issue: 12
  year: 2004
  ident: 10.1016/j.jfluidstructs.2018.04.012_b10
  article-title: Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2003.12.018
– ident: 10.1016/j.jfluidstructs.2018.04.012_b33
– year: 1959
  ident: 10.1016/j.jfluidstructs.2018.04.012_b74
– volume: 116
  start-page: 123
  year: 1995
  ident: 10.1016/j.jfluidstructs.2018.04.012_b73
  article-title: Smoothed particle hydrodynamics stability analysis
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1010
– volume: 83
  start-page: 1476
  year: 2005
  ident: 10.1016/j.jfluidstructs.2018.04.012_b62
  article-title: Boundary conditions for a dual particle method
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2004.11.027
– volume: 23
  start-page: 171
  year: 2005
  ident: 10.1016/j.jfluidstructs.2018.04.012_b83
  article-title: Material stability analysis of particle methods
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-004-1817-5
– volume: 305
  start-page: 849
  year: 2016
  ident: 10.1016/j.jfluidstructs.2018.04.012_b71
  article-title: Detection of Lagrangian coherent structures in the SPH framework
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.03.027
– year: 2012
  ident: 10.1016/j.jfluidstructs.2018.04.012_b79
– volume: 126
  start-page: 133
  issue: 2
  year: 2002
  ident: 10.1016/j.jfluidstructs.2018.04.012_b9
  article-title: A simplified approach to enhance the performance of smooth particle hydrodynamics methods
  publication-title: Appl. Math. Comput.
– volume: 50
  start-page: 497
  year: 2014
  ident: 10.1016/j.jfluidstructs.2018.04.012_b36
  article-title: Development of a fully Lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2014.07.007
– volume: 74
  start-page: 1
  year: 2013
  ident: 10.1016/j.jfluidstructs.2018.04.012_b70
  article-title: Experimental hydroelastic characterization of slamming loaded marine panels
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2013.09.007
– volume: 84
  start-page: 201
  year: 2014
  ident: 10.1016/j.jfluidstructs.2018.04.012_b55
  article-title: Fluid–structure interaction for an elastic structure interacting with free surface in a rolling tank
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2014.04.016
– volume: 81
  start-page: 48
  year: 2010
  ident: 10.1016/j.jfluidstructs.2018.04.012_b57
  article-title: Immersed particle method for fluid–structure interaction
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2670
– volume: 94
  start-page: 183
  year: 2013
  ident: 10.1016/j.jfluidstructs.2018.04.012_b65
  article-title: A quasi-static dual particle method for solids based on dual particle dynamics
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4451
– volume: 136
  start-page: 11
  year: 2016
  ident: 10.1016/j.jfluidstructs.2018.04.012_b66
  article-title: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2016.05.029
– start-page: 7
  year: 1970
  ident: 10.1016/j.jfluidstructs.2018.04.012_b47
– volume: 56
  start-page: 419
  issue: 4
  year: 2009
  ident: 10.1016/j.jfluidstructs.2018.04.012_b40
  article-title: Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2008.10.004
– volume: 184
  start-page: 67
  year: 2000
  ident: 10.1016/j.jfluidstructs.2018.04.012_b78
  article-title: A treatment of zero-energy modes in the smoothed particle hydrodynamics method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00441-7
– year: 1990
  ident: 10.1016/j.jfluidstructs.2018.04.012_b87
– volume: 95
  start-page: 387
  issue: 5
  year: 2013
  ident: 10.1016/j.jfluidstructs.2018.04.012_b16
  article-title: An arbitrary order variationally consistent integration for Galerkin meshfree methods
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4512
– volume: 43
  start-page: 329
  year: 2000
  ident: 10.1016/j.jfluidstructs.2018.04.012_b7
  article-title: Stability analysis of particle methods with corrected derivatives
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(01)00290-5
– volume: 118
  start-page: 227
  year: 2016
  ident: 10.1016/j.jfluidstructs.2018.04.012_b38
  article-title: Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid–structure interaction analysis method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2016.04.006
– volume: 54
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.jfluidstructs.2018.04.012_b80
  article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2015.1119209
– ident: 10.1016/j.jfluidstructs.2018.04.012_b14
  doi: 10.1201/b18179-12
– volume: 53
  start-page: 171
  year: 2006
  ident: 10.1016/j.jfluidstructs.2018.04.012_b30
  article-title: Key issues in the particle method for computation of wave breaking
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2005.10.007
– volume: 39
  start-page: 126
  year: 2013
  ident: 10.1016/j.jfluidstructs.2018.04.012_b13
  article-title: SPH modeling of fluid–solid interaction for dynamic failure analysis of fluid-filled thin shells
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2013.02.023
– volume: 217
  start-page: 66
  year: 2017
  ident: 10.1016/j.jfluidstructs.2018.04.012_b24
  article-title: An efficient FSI coupling strategy between Smoothed Particle Hydrodynamics and Finite Element methods
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2017.04.005
– volume: 48
  start-page: 1359
  year: 2000
  ident: 10.1016/j.jfluidstructs.2018.04.012_b5
  article-title: A unified stability analysis of meshless particle methods
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U
– volume: 2
  start-page: 251
  issue: 3
  year: 2016
  ident: 10.1016/j.jfluidstructs.2018.04.012_b27
  article-title: Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering
  publication-title: J. Ocean Eng. Marine Energy
  doi: 10.1007/s40722-016-0049-3
– volume: 32
  start-page: 124
  issue: 1
  year: 2010
  ident: 10.1016/j.jfluidstructs.2018.04.012_b41
  article-title: A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2010.01.001
– volume: 198
  start-page: 2785
  year: 2009
  ident: 10.1016/j.jfluidstructs.2018.04.012_b58
  article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2009.04.001
– volume: 85
  start-page: 688
  year: 2007
  ident: 10.1016/j.jfluidstructs.2018.04.012_b48
  article-title: Fluid–shell structure interaction analysis by coupled particle and finite element method
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.01.019
– volume: 193
  start-page: 1035
  year: 2004
  ident: 10.1016/j.jfluidstructs.2018.04.012_b56
  article-title: Stable particle methods based on Lagrangian kernels
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2003.12.005
– volume: 43
  start-page: 276
  issue: 3
  year: 2005
  ident: 10.1016/j.jfluidstructs.2018.04.012_b67
  article-title: Turbulence particle models for tracking free surfaces
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221680509500122
– volume: 6
  start-page: 295
  year: 2016
  ident: 10.1016/j.jfluidstructs.2018.04.012_b72
  article-title: Coupled MPS-modal superposition method for 2D non-linear fluid–structure interaction problems with free surface
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2015.12.002
– year: 2013
  ident: 10.1016/j.jfluidstructs.2018.04.012_b29
– volume: 190
  start-page: 6641
  year: 2001
  ident: 10.1016/j.jfluidstructs.2018.04.012_b32
  article-title: SPH elastic dynamics
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(01)00254-7
– start-page: 57
  year: 2007
  ident: 10.1016/j.jfluidstructs.2018.04.012_b17
  article-title: Strain smoothing for stabilization and regularization of Galerkin meshfree methods
– volume: 317
  start-page: 771
  year: 2017
  ident: 10.1016/j.jfluidstructs.2018.04.012_b15
  article-title: SPH energy conservation for fluid-solid interactions
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.12.037
– volume: 177
  start-page: 141
  year: 2016
  ident: 10.1016/j.jfluidstructs.2018.04.012_b82
  article-title: A coupled SPH-DEM model for fluid–structure interaction problems with free-surface flow and structural failure
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.08.012
– volume: 180
  start-page: 97
  year: 1999
  ident: 10.1016/j.jfluidstructs.2018.04.012_b11
  article-title: Variational and momentum preservation aspects of smooth particle hydrodynamic formulations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00051-1
– volume: 55
  start-page: 136
  year: 2012
  ident: 10.1016/j.jfluidstructs.2018.04.012_b84
  article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2012.06.031
– year: 2010
  ident: 10.1016/j.jfluidstructs.2018.04.012_b54
– volume: 337
  start-page: 216
  year: 2017
  ident: 10.1016/j.jfluidstructs.2018.04.012_b86
  article-title: A generalized transport-velocity formulation for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.02.016
– volume: 91
  start-page: 1227
  issue: 11
  year: 2012
  ident: 10.1016/j.jfluidstructs.2018.04.012_b64
  article-title: Dynamic failure simulation of quasi-brittle material in dual particle dynamics
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4327
– volume: 57
  start-page: 573
  year: 1995
  ident: 10.1016/j.jfluidstructs.2018.04.012_b21
  article-title: An approach for tensile instability in smoothed particle hydrodynamics
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(95)00059-P
– volume: 69
  start-page: 2687
  year: 2007
  ident: 10.1016/j.jfluidstructs.2018.04.012_b77
  article-title: Stabilized updated Lagrangian corrected SPH for explicit dynamic problems
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1859
– volume: 20
  start-page: 181
  issue: 3
  year: 2010
  ident: 10.1016/j.jfluidstructs.2018.04.012_b53
  article-title: Simulations of hydro-elastic impacts using a parallel SPH model
  publication-title: Int. J. Offshore Polar Eng.
– volume: 230
  start-page: 3093
  issue: 8
  year: 2011
  ident: 10.1016/j.jfluidstructs.2018.04.012_b42
  article-title: Enhancement of stability and accuracy of the moving particle semi-implicit method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.01.009
– volume: 146
  start-page: 371
  year: 1996
  ident: 10.1016/j.jfluidstructs.2018.04.012_b59
  article-title: Smoothed particle hydrodynamics: Some recent improvements and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2013
  ident: 10.1016/j.jfluidstructs.2018.04.012_b1
– volume: 14
  issue: 4
  year: 2017
  ident: 10.1016/j.jfluidstructs.2018.04.012_b19
  article-title: Dual-support smoothed particle hydrodynamics for elastic mechanics
  publication-title: Int. J. Comput. Math.
– year: 1997
  ident: 10.1016/j.jfluidstructs.2018.04.012_b12
– volume: 146
  start-page: 371
  year: 1998
  ident: 10.1016/j.jfluidstructs.2018.04.012_b46
  article-title: Consistent pseudo-derivatives in meshless methods
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(96)01234-0
– volume: 52
  start-page: 1203
  issue: 11
  year: 2001
  ident: 10.1016/j.jfluidstructs.2018.04.012_b8
  article-title: Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.242
– volume: 332
  start-page: 236
  year: 2017
  ident: 10.1016/j.jfluidstructs.2018.04.012_b44
  article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.12.005
– volume: 55
  start-page: 697
  issue: 4
  year: 2015
  ident: 10.1016/j.jfluidstructs.2018.04.012_b50
  article-title: A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid–structure interaction problems with large interface motion
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-015-1131-8
– volume: 48
  start-page: 1445
  year: 2000
  ident: 10.1016/j.jfluidstructs.2018.04.012_b61
  article-title: Normalized SPH with stress points
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9
– volume: 188
  start-page: 95
  year: 2017
  ident: 10.1016/j.jfluidstructs.2018.04.012_b68
  article-title: Coupled fluid–structure computational methods for aircraft ditching simulations: Comparison of ALE-FE and SPH-FE approaches
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2017.04.004
– volume: 43
  start-page: 125
  year: 2008
  ident: 10.1016/j.jfluidstructs.2018.04.012_b39
  article-title: Interaction between an elastic structure and free-surface flows: Experimental versus numerical comparisons using the PFEM
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-008-0245-7
– volume: 82
  start-page: 158
  year: 2013
  ident: 10.1016/j.jfluidstructs.2018.04.012_b76
  article-title: A short note on dynamic stabilization of moving particle semi-implicit method
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2013.05.001
– year: 2012
  ident: 10.1016/j.jfluidstructs.2018.04.012_b23
– year: 2000
  ident: 10.1016/j.jfluidstructs.2018.04.012_b35
– volume: 7
  start-page: 299
  issue: 3
  year: 2017
  ident: 10.1016/j.jfluidstructs.2018.04.012_b43
  article-title: Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D Hydroelastic slamming
  publication-title: Ocean Syst. Eng.
– volume: 70
  start-page: 1
  year: 2017
  ident: 10.1016/j.jfluidstructs.2018.04.012_b52
  article-title: On the filtering of acoustic components in weakly-compressible SPH simulations
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.01.005
– volume: 48
  start-page: 155
  issue: 2
  year: 2011
  ident: 10.1016/j.jfluidstructs.2018.04.012_b45
  article-title: Current achievements and future perspectives on particle simulation technologies for fluid dynamics and heat transfer
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.2011.9711690
– volume: 1
  start-page: 245
  issue: 3
  year: 2014
  ident: 10.1016/j.jfluidstructs.2018.04.012_b34
  article-title: Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems
  publication-title: Comput. Part. Mech.
  doi: 10.1007/s40571-014-0024-5
– volume: 71
  start-page: 16
  issue: 701
  year: 2005
  ident: 10.1016/j.jfluidstructs.2018.04.012_b69
  article-title: Dynamic Analysis of elastic solids by MPS method
  publication-title: Trans. Japan Soc. Mech. Eng. Ser. A
  doi: 10.1299/kikaia.71.16
SSID ssj0009431
Score 2.296683
Snippet A fully-Lagrangian particle-based computational method is developed for simulation of incompressible Fluid, non-linear Structure Interaction (FSI) with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 325
SubjectTerms Dual Particle Dynamics
Fluid–Structure Interaction
Moving Least Squares
Moving Particle Semi-Implicit
Stress point integration
Title Enhanced particle method with stress point integration for simulation of incompressible fluid-nonlinear elastic structure interaction
URI https://dx.doi.org/10.1016/j.jfluidstructs.2018.04.012
Volume 81
WOSCitedRecordID wos000440771500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-8622
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009431
  issn: 0889-9746
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLkJwQDzF8pIluKGgJHZqmwPSChUKhxWHReotcvxQU5Wkastq9wfwi_iD2Bnn0YWVChKXqErraZz5Op46M9-H0CviVhEZFyrSSsuIEm6jwlgTyaKIUy2pIQVtxCbY6Smfz8WX0ehn2wtzvmJVxS8uxPq_utqdc872rbN_4e7OqDvhXjunu6Nzuzse5PhptYCn-uvwZlCJDtXo0Buyrstq13FFtOWG2_JbUPMCJglfb97Uyfr2Krv6XuqoAmoNuXltXN7t2V6BgdY_h_DmNtAocU3O29gAVuhuWN-AIldyIUGkYFZvTdkXCCzk5WWQ3S4K2Y34WO_qZlto5uLSdlEOtzAS3hXQ9ZFORO6PzWQYlkHJJcRVAt3RYYkmIEHwW_SHjYjlmyXMppmHp2RPeENnG-q19zi3r6yFXYViW_y2zPeM5d5YHtM89srWRynLBB-jo5NP0_nnnuuZggxmO6ub6GVfVnjttf05MRokO2d30Z3gMXwCALqHRqa6j24PuCsfoB8tznCLMww4wx5nGHCGG5zhAc6wwxnucYZri_dxhq_gDAec4Q4weICzh-jrh-nZ-1kUND0iRVK2c4uvIJobIXRhrRApczdJaCmZshmVXBpubSxiYXiqJ4SolCpNEpvpOLXMqoI8QmN3BeYxwhMjLefc6MSTOCpSMMJYluhUU81VRo_R2_aG5ioQ3nvdlVV-gHOPEe0Gr4H35bBh71rP5SGFhdQ0dxg9xMCTf_vep-hW_8N6hsbuE-Y5uqHOd-V28yIA9Bcx2dYS
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+particle+method+with+stress+point+integration+for+simulation+of+incompressible+fluid-nonlinear+elastic+structure+interaction&rft.jtitle=Journal+of+fluids+and+structures&rft.au=Falahaty%2C+Hosein&rft.au=Khayyer%2C+Abbas&rft.au=Gotoh%2C+Hitoshi&rft.date=2018-08-01&rft.issn=0889-9746&rft.volume=81&rft.spage=325&rft.epage=360&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2018.04.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfluidstructs_2018_04_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon