Solution of delay differential equations via a homotopy perturbation method

Delay differential equations (denoted as DDE) have a wide range of application in science and engineering. They arise when the rate of change of a time-dependent process in its mathematical modeling is not only determined by its present state but also by a certain past state. Recent studies in such...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical and computer modelling Vol. 48; no. 3; pp. 486 - 498
Main Authors: Shakeri, Fatemeh, Dehghan, Mehdi
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.08.2008
Elsevier Science
Subjects:
ISSN:0895-7177, 1872-9479
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Delay differential equations (denoted as DDE) have a wide range of application in science and engineering. They arise when the rate of change of a time-dependent process in its mathematical modeling is not only determined by its present state but also by a certain past state. Recent studies in such diverse fields as biology, economy, control and electrodynamics have shown that DDEs play an important role in explaining many different phenomena. In particular they turn out to be fundamental when ODE-based models fail. In this research, the solution of a delay differential equation is presented by means of a homotopy perturbation method and then some numerical illustrations are given. These results reveal that the proposed method is very effective and simple to perform.
AbstractList Delay differential equations (denoted as DDE) have a wide range of application in science and engineering. They arise when the rate of change of a time-dependent process in its mathematical modeling is not only determined by its present state but also by a certain past state. Recent studies in such diverse fields as biology, economy, control and electrodynamics have shown that DDEs play an important role in explaining many different phenomena. In particular they turn out to be fundamental when ODE-based models fail. In this research, the solution of a delay differential equation is presented by means of a homotopy perturbation method and then some numerical illustrations are given. These results reveal that the proposed method is very effective and simple to perform.
Author Dehghan, Mehdi
Shakeri, Fatemeh
Author_xml – sequence: 1
  givenname: Fatemeh
  surname: Shakeri
  fullname: Shakeri, Fatemeh
  email: fatemehshakeri@aut.ac.ir
– sequence: 2
  givenname: Mehdi
  surname: Dehghan
  fullname: Dehghan, Mehdi
  email: mdehghan@aut.ac.ir
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20470560$$DView record in Pascal Francis
BookMark eNp9kEtPwzAQhC1UJMrjB3DzhWPCOq7jRJxQxUsgcQDO1saxVVdJXGy3Uv89aQsXDj2NtDPfanfOyWTwgyHkmkHOgJW3y7zXfV4AyBzqfJyckCmrZJHVM1lPyBSqWmSSSXlGzmNcAoCooZqS1w_frZPzA_WWtqbDLW2dtSaYITnsqPle486OdOOQIl343ie_2tKVCWkdmr1Je5MWvr0kpxa7aK5-9YJ8PT58zp-zt_enl_n9W6Z5IVMmha4NL7m12BSiERJF2XBWac15g7a0VlQcbcWZsaKcQTtKq6HEssAZSuQX5Oawd4VRY2cDDtpFtQqux7BVBcwkiBLGnDzkdPAxBmOVdml_cAroOsVA7bpTSzV2p3bdKajVOBlJ9o_8W36MuTswZnx940xQUTszaNO6YHRSrXdH6B-eCYsP
CitedBy_id crossref_primary_10_1108_HFF_09_2011_0192
crossref_primary_10_1016_j_cnsns_2011_07_018
crossref_primary_10_1002_cnm_1399
crossref_primary_10_1002_cnm_1398
crossref_primary_10_1063_5_0271644
crossref_primary_10_1002_mma_2676
crossref_primary_10_1007_s00366_021_01422_7
crossref_primary_10_1016_j_asoc_2014_08_055
crossref_primary_10_1007_s11075_016_0188_6
crossref_primary_10_1108_09615531111105399
crossref_primary_10_1007_s40314_019_0953_y
crossref_primary_10_1016_j_cnsns_2012_05_009
crossref_primary_10_1155_2008_956170
crossref_primary_10_1088_0253_6102_53_6_02
crossref_primary_10_1016_j_jksus_2011_08_005
crossref_primary_10_1016_j_mcm_2010_04_007
crossref_primary_10_1155_2010_561364
crossref_primary_10_1007_s40995_017_0467_7
crossref_primary_10_1108_EC_02_2022_0094
crossref_primary_10_1108_09615531211231235
crossref_primary_10_1007_s40819_015_0072_4
crossref_primary_10_1016_j_camwa_2009_03_017
crossref_primary_10_1016_j_cpc_2009_01_012
crossref_primary_10_1108_09615531211244934
crossref_primary_10_1007_s11075_011_9448_7
crossref_primary_10_1002_num_20490
crossref_primary_10_1108_09615531211215792
crossref_primary_10_1002_cnm_1200
crossref_primary_10_1002_cnm_1288
crossref_primary_10_1007_s11760_015_0811_3
crossref_primary_10_1088_0031_8949_78_06_065004
crossref_primary_10_1080_00207160802247646
crossref_primary_10_3390_sym13030418
crossref_primary_10_1007_s00366_021_01491_8
crossref_primary_10_1016_j_cam_2016_02_025
crossref_primary_10_1016_j_apm_2023_02_018
crossref_primary_10_1140_epjp_i2017_11344_9
crossref_primary_10_1155_2022_9512048
crossref_primary_10_1002_num_20413
crossref_primary_10_1016_j_advwatres_2009_09_003
crossref_primary_10_1002_num_20416
crossref_primary_10_1088_1742_6596_1730_1_012114
crossref_primary_10_1088_1742_6596_890_1_012023
crossref_primary_10_1515_phys_2015_0052
crossref_primary_10_1016_j_molliq_2013_09_010
crossref_primary_10_1186_s13662_021_03340_w
crossref_primary_10_1002_mma_1329
crossref_primary_10_1080_00207160902783540
crossref_primary_10_1016_j_jksus_2010_07_016
crossref_primary_10_1080_02286203_2024_2315534
crossref_primary_10_1007_s11071_019_05403_w
crossref_primary_10_1007_s00366_020_01219_0
crossref_primary_10_1016_j_cpc_2010_02_018
crossref_primary_10_1002_mma_1601
crossref_primary_10_1016_j_aml_2011_03_032
crossref_primary_10_1080_00207160_2010_488292
crossref_primary_10_1155_2017_7269450
crossref_primary_10_1007_s40324_017_0117_1
crossref_primary_10_1186_s13662_018_1717_5
crossref_primary_10_1007_s40819_017_0374_9
crossref_primary_10_1007_s40819_022_01466_3
crossref_primary_10_1163_156939312798954964
crossref_primary_10_1016_j_apm_2015_01_001
crossref_primary_10_1002_mma_9178
crossref_primary_10_1002_mma_2890
crossref_primary_10_1002_mma_8358
crossref_primary_10_1016_j_jocs_2023_102206
crossref_primary_10_1177_1461348419830210
crossref_primary_10_1002_fld_2211
crossref_primary_10_1016_j_jksus_2010_04_008
crossref_primary_10_1080_00207160_2017_1344230
crossref_primary_10_1002_mma_4839
crossref_primary_10_1002_mma_2647
crossref_primary_10_1002_mma_2801
crossref_primary_10_1016_j_cpc_2010_02_007
crossref_primary_10_1108_09615531211244916
crossref_primary_10_1155_2008_869614
crossref_primary_10_1007_s42452_018_0130_8
crossref_primary_10_1155_2015_273830
crossref_primary_10_1155_2015_382475
crossref_primary_10_1177_1077546312464988
crossref_primary_10_1016_j_apm_2014_09_003
crossref_primary_10_1016_j_chaos_2023_113481
crossref_primary_10_1002_mma_7020
crossref_primary_10_1140_epjp_i2017_11512_y
crossref_primary_10_1016_j_mcm_2011_09_037
crossref_primary_10_1186_s13662_019_1961_3
crossref_primary_10_1371_journal_pcbi_1008633
crossref_primary_10_1108_09615531111123119
crossref_primary_10_1016_j_amc_2020_125334
crossref_primary_10_1007_s40819_016_0212_5
crossref_primary_10_3390_math7060532
crossref_primary_10_1016_j_physleta_2009_07_002
crossref_primary_10_1016_j_apm_2012_02_041
crossref_primary_10_1002_cnm_1352
crossref_primary_10_1016_j_cam_2013_08_018
crossref_primary_10_1080_00207160903023581
crossref_primary_10_1007_s40819_017_0390_9
crossref_primary_10_1016_j_cnsns_2012_01_032
crossref_primary_10_1007_s40995_023_01445_3
crossref_primary_10_1080_00207160903019480
crossref_primary_10_1108_09615531311301245
crossref_primary_10_1080_00207160903477159
crossref_primary_10_1177_1077546311408467
crossref_primary_10_1016_j_amc_2014_03_090
crossref_primary_10_1080_00207160902874653
crossref_primary_10_1016_j_cam_2015_06_005
crossref_primary_10_1002_apj_647
crossref_primary_10_1016_j_cnsns_2011_03_039
crossref_primary_10_1108_09615531111162783
crossref_primary_10_1002_fld_2315
crossref_primary_10_1016_j_tsep_2024_102563
crossref_primary_10_3390_mca27050081
crossref_primary_10_1002_nme_3122
crossref_primary_10_1002_num_20441
crossref_primary_10_1108_09615531211199854
crossref_primary_10_1016_j_amc_2011_11_082
crossref_primary_10_1002_num_20565
crossref_primary_10_1080_09720502_2020_1850994
crossref_primary_10_1108_09615531011081423
crossref_primary_10_1002_mma_3556
crossref_primary_10_1080_00207160903082389
crossref_primary_10_1108_09615531011056809
crossref_primary_10_1002_mma_3277
crossref_primary_10_1016_j_apm_2011_12_020
crossref_primary_10_1016_j_jksus_2010_07_007
crossref_primary_10_1016_j_jksus_2017_09_019
crossref_primary_10_1016_j_amc_2012_09_048
crossref_primary_10_1016_j_physa_2017_12_007
crossref_primary_10_1155_2022_1049561
crossref_primary_10_1016_j_apm_2012_09_032
crossref_primary_10_1007_s10440_008_9318_z
crossref_primary_10_1038_s41598_023_33461_z
crossref_primary_10_1080_00207160903128497
crossref_primary_10_1155_2014_937345
crossref_primary_10_1155_2022_3218213
crossref_primary_10_1080_09720502_2019_1694742
crossref_primary_10_1155_2013_939143
crossref_primary_10_1016_j_apnum_2016_12_003
crossref_primary_10_1007_s10778_018_0864_4
crossref_primary_10_1016_j_cap_2010_03_015
crossref_primary_10_1016_j_icheatmasstransfer_2010_03_009
crossref_primary_10_1016_j_jksus_2010_05_008
crossref_primary_10_1016_j_cnsns_2016_12_027
crossref_primary_10_1002_mma_1246
crossref_primary_10_1108_09615531011016957
crossref_primary_10_1155_2014_631416
crossref_primary_10_32604_cmc_2022_030888
crossref_primary_10_1016_j_jksus_2010_05_005
crossref_primary_10_1016_j_cam_2012_11_013
crossref_primary_10_1155_2016_6862028
crossref_primary_10_1016_j_chaos_2009_03_147
crossref_primary_10_1016_j_apm_2011_09_082
crossref_primary_10_1063_5_0195270
crossref_primary_10_1080_00207160802545908
crossref_primary_10_1007_s11063_017_9711_6
crossref_primary_10_1108_HFF_03_2011_0070
crossref_primary_10_1155_2022_7519002
crossref_primary_10_1002_num_20460
crossref_primary_10_1155_2020_7359242
crossref_primary_10_1016_j_camwa_2012_03_053
crossref_primary_10_1155_2013_498902
crossref_primary_10_1186_1687_1847_2012_178
crossref_primary_10_1515_IJNSNS_2009_10_2_235
crossref_primary_10_1016_j_apnum_2020_07_001
crossref_primary_10_1002_cnm_1146
crossref_primary_10_1051_matecconf_201712502001
crossref_primary_10_1002_mma_1599
crossref_primary_10_1002_mma_10043
crossref_primary_10_1016_j_apnum_2013_11_003
crossref_primary_10_1002_cnm_1308
crossref_primary_10_1016_j_camwa_2008_11_003
crossref_primary_10_1016_j_proeng_2012_06_319
crossref_primary_10_1007_s40995_019_00812_3
crossref_primary_10_1016_j_apm_2016_02_005
crossref_primary_10_1155_2022_8130940
crossref_primary_10_1016_j_amc_2015_06_012
crossref_primary_10_1016_j_jksuci_2023_101890
crossref_primary_10_1007_s10915_024_02696_x
crossref_primary_10_1002_num_20473
crossref_primary_10_1080_10236198_2016_1142539
crossref_primary_10_1016_j_apnum_2021_05_024
crossref_primary_10_1140_epjp_i2018_11859_5
crossref_primary_10_1002_num_20478
crossref_primary_10_1002_num_20511
Cites_doi 10.1016/j.cam.2006.07.030
10.1016/j.physleta.2006.03.039
10.1088/0031-8949/75/6/007
10.2528/PIER07090403
10.1016/j.chaos.2006.04.019
10.1016/S0045-7825(99)00018-3
10.1016/j.physleta.2005.10.005
10.1016/j.physleta.2006.11.062
10.1016/j.chaos.2005.08.180
10.1016/j.amc.2006.10.001
10.1088/0031-8949/75/4/031
10.1016/j.matcom.2005.10.001
10.1615/JPorMedia.v11.i8.50
10.1002/num.20071
10.1016/S0096-3003(01)00312-5
10.1016/j.chaos.2006.06.037
10.1016/j.chaos.2005.03.006
10.1002/cnm.832
10.1016/S0020-7462(98)00085-7
10.1016/j.chaos.2006.09.070
10.1016/j.amc.2006.09.019
10.1016/j.chaos.2006.05.074
ContentType Journal Article
Copyright 2007 Elsevier Ltd
2008 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: 2008 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.mcm.2007.09.016
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1872-9479
EndPage 498
ExternalDocumentID 20470560
10_1016_j_mcm_2007_09_016
S0895717707003342
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
29M
4.4
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABFNM
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SSB
SSD
SST
SSW
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
XSW
YNT
YQT
ZMT
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
IQODW
SSH
ID FETCH-LOGICAL-c327t-75c9e363ffab25b57a56b318cc33baf6ff583af831ef5640def5dc06a62a4a7a3
ISICitedReferencesCount 237
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000256694400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0895-7177
IngestDate Mon Jul 21 09:17:05 EDT 2025
Sat Nov 29 06:30:23 EST 2025
Tue Nov 18 22:37:54 EST 2025
Fri Feb 23 02:25:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Delay differential equations
Homotopy perturbation method
Applications in mathematical biology and engineering
Differential equation
Numerical method
Delay equation
Perturbation method
Numerical analysis
Scientific computation
Applied mathematics
Homotopy
Mathematical model
Computer aided analysis
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-75c9e363ffab25b57a56b318cc33baf6ff583af831ef5640def5dc06a62a4a7a3
OpenAccessLink https://dx.doi.org/10.1016/j.mcm.2007.09.016
PageCount 13
ParticipantIDs pascalfrancis_primary_20470560
crossref_citationtrail_10_1016_j_mcm_2007_09_016
crossref_primary_10_1016_j_mcm_2007_09_016
elsevier_sciencedirect_doi_10_1016_j_mcm_2007_09_016
PublicationCentury 2000
PublicationDate 2008-08-01
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Mathematical and computer modelling
PublicationYear 2008
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References He (b5) 2003; 135
Siddiqui, Zeb, Ghori, Benharbit (b17) 2008; 36
Cveticanin (b9) 2006; 30
He (b10) 2005; 26
M. Rafei, D.D. Ganji, H. Daniali, Solution of the epidemic model by homotopy perturbation method, Applied Mathematics and Computation (in press)
Ganji, Sadighi (b11) 2007; 207
Shakeri, Dehghan (b21) 2007; 75
Dugard, Verriest (b2) 1997; vol. 228
Dehghan, Shakeri (b22) 2007; 75
Ganji, Rafei (b8) 2006; 356
A. Beléndez, T. Beléndez, A. Márquez, C. Neipp, Application of He’s homotopy perturbation method to conservative truly nonlinear oscillators, Chaos, Solitons and Fractals (in press)
Dehghan, Shakeri (b24) 2008; 78
He (b3) 1999; 178
He (b4) 2000; 35
Ghasemi, Tavassoli Kajani, Babolian (b15) 2007; 188
Wang (b7) 2008; 35
Dehghan (b19) 2006; 71
A. Rajabi, Homotopy perturbation method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Physics Letters A (in press)
Chun (b18) 2007; 34
Kuang (b1) 1993
He (b6) 2006; 350
Dehghan (b20) 2006; 22
Chun, Ham (b13) 2006; 22
M. Dehghan, F. Shakeri, The use of He’s homotopy perturbation method for solving a partial differential equation arising in modeling of flow in porous media, Journal of Porous Media (2008) (in press)
Cveticanin (10.1016/j.mcm.2007.09.016_b9) 2006; 30
Ghasemi (10.1016/j.mcm.2007.09.016_b15) 2007; 188
Siddiqui (10.1016/j.mcm.2007.09.016_b17) 2008; 36
Ganji (10.1016/j.mcm.2007.09.016_b11) 2007; 207
Dehghan (10.1016/j.mcm.2007.09.016_b22) 2007; 75
He (10.1016/j.mcm.2007.09.016_b6) 2006; 350
Dugard (10.1016/j.mcm.2007.09.016_b2) 1997; vol. 228
Kuang (10.1016/j.mcm.2007.09.016_b1) 1993
Ganji (10.1016/j.mcm.2007.09.016_b8) 2006; 356
Dehghan (10.1016/j.mcm.2007.09.016_b19) 2006; 71
He (10.1016/j.mcm.2007.09.016_b10) 2005; 26
Dehghan (10.1016/j.mcm.2007.09.016_b20) 2006; 22
He (10.1016/j.mcm.2007.09.016_b5) 2003; 135
Wang (10.1016/j.mcm.2007.09.016_b7) 2008; 35
10.1016/j.mcm.2007.09.016_b14
Chun (10.1016/j.mcm.2007.09.016_b18) 2007; 34
10.1016/j.mcm.2007.09.016_b16
Chun (10.1016/j.mcm.2007.09.016_b13) 2006; 22
Dehghan (10.1016/j.mcm.2007.09.016_b24) 2008; 78
He (10.1016/j.mcm.2007.09.016_b4) 2000; 35
Shakeri (10.1016/j.mcm.2007.09.016_b21) 2007; 75
He (10.1016/j.mcm.2007.09.016_b3) 1999; 178
10.1016/j.mcm.2007.09.016_b12
10.1016/j.mcm.2007.09.016_b23
References_xml – volume: 22
  start-page: 475
  year: 2006
  end-page: 487
  ident: b13
  article-title: Newton-like iteration methods for solving non-linear equations
  publication-title: Communications in Numerical Methods in Engineering
– volume: 188
  start-page: 450
  year: 2007
  end-page: 455
  ident: b15
  article-title: Numerical solutions of the nonlinear integro-differential equations: Wavelet-Galerkin method and homotopy perturbation method
  publication-title: Applied Mathematics and Computation
– reference: M. Dehghan, F. Shakeri, The use of He’s homotopy perturbation method for solving a partial differential equation arising in modeling of flow in porous media, Journal of Porous Media (2008) (in press)
– volume: 35
  start-page: 843
  year: 2008
  end-page: 850
  ident: b7
  article-title: Homotopy perturbation method for fractional KdV–Burgers equation
  publication-title: Chaos, Solitons and Fractals
– volume: 356
  start-page: 131
  year: 2006
  end-page: 137
  ident: b8
  article-title: Solitary wave solutions for a generalized Hirota–Satsuma coupled KdV equation by homotopy perturbation method
  publication-title: Physics Letters A
– reference: A. Beléndez, T. Beléndez, A. Márquez, C. Neipp, Application of He’s homotopy perturbation method to conservative truly nonlinear oscillators, Chaos, Solitons and Fractals (in press)
– volume: 178
  start-page: 257
  year: 1999
  end-page: 262
  ident: b3
  article-title: Homotopy perturbation technique
  publication-title: Computational Methods in Applied Mechanics and Engineering
– volume: 35
  start-page: 37
  year: 2000
  end-page: 43
  ident: b4
  article-title: A coupling method of a homotopy technique and a perturbation technique for non-linear problems
  publication-title: International Journal of Non-Linear Mechanics
– volume: vol. 228
  year: 1997
  ident: b2
  publication-title: Stability and Control of Time-delay Systems
– volume: 36
  start-page: 182
  year: 2008
  end-page: 192
  ident: b17
  article-title: Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates
  publication-title: Chaos, Solitons and Fractals
– volume: 30
  start-page: 1221
  year: 2006
  end-page: 1230
  ident: b9
  article-title: Homotopy perturbation method for pure nonlinear differential equation
  publication-title: Chaos, Solitons and Fractals
– reference: M. Rafei, D.D. Ganji, H. Daniali, Solution of the epidemic model by homotopy perturbation method, Applied Mathematics and Computation (in press)
– volume: 207
  start-page: 24
  year: 2007
  end-page: 34
  ident: b11
  article-title: Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations
  publication-title: Journal of Computational and Applied Mathematics
– volume: 75
  start-page: 551
  year: 2007
  end-page: 556
  ident: b21
  article-title: Inverse problem of diffusion equation by He’s homotopy perturbation method
  publication-title: Physica Scripta
– volume: 75
  start-page: 778
  year: 2007
  end-page: 787
  ident: b22
  article-title: Solution of a partial differential equation subject to temperature overspecification by He’s homotopy perturbation method
  publication-title: Physica Scripta
– year: 1993
  ident: b1
  article-title: Delay Differential Equations with Applications in Population Dynamics
– volume: 350
  start-page: 87
  year: 2006
  end-page: 88
  ident: b6
  article-title: Homotopy perturbation method for solving boundary value problems
  publication-title: Physics Letters A
– volume: 34
  start-page: 1130
  year: 2007
  end-page: 1134
  ident: b18
  article-title: Integration using He’s homotopy perturbation method
  publication-title: Chaos, Solitons and Fractals
– volume: 26
  start-page: 695
  year: 2005
  end-page: 700
  ident: b10
  article-title: Application of homotopy perturbation method to nonlinear wave equations
  publication-title: Chaos, Solitons and Fractals
– volume: 22
  start-page: 220
  year: 2006
  end-page: 257
  ident: b20
  article-title: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications
  publication-title: Numerical Methods for Partial Differential Equations
– reference: A. Rajabi, Homotopy perturbation method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Physics Letters A (in press)
– volume: 135
  start-page: 73
  year: 2003
  end-page: 79
  ident: b5
  article-title: Homotopy perturbation method: A new nonlinear analytical technique
  publication-title: Applied Mathematics and Computation
– volume: 71
  start-page: 16
  year: 2006
  end-page: 30
  ident: b19
  article-title: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
  publication-title: Mathematics and Computers in Simulation
– volume: 78
  start-page: 361
  year: 2008
  end-page: 376
  ident: b24
  article-title: Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method
  publication-title: Progress in Electromagnetics Research
– volume: 207
  start-page: 24
  year: 2007
  ident: 10.1016/j.mcm.2007.09.016_b11
  article-title: Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2006.07.030
– volume: 356
  start-page: 131
  year: 2006
  ident: 10.1016/j.mcm.2007.09.016_b8
  article-title: Solitary wave solutions for a generalized Hirota–Satsuma coupled KdV equation by homotopy perturbation method
  publication-title: Physics Letters A
  doi: 10.1016/j.physleta.2006.03.039
– volume: 75
  start-page: 778
  year: 2007
  ident: 10.1016/j.mcm.2007.09.016_b22
  article-title: Solution of a partial differential equation subject to temperature overspecification by He’s homotopy perturbation method
  publication-title: Physica Scripta
  doi: 10.1088/0031-8949/75/6/007
– volume: 78
  start-page: 361
  year: 2008
  ident: 10.1016/j.mcm.2007.09.016_b24
  article-title: Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method
  publication-title: Progress in Electromagnetics Research
  doi: 10.2528/PIER07090403
– volume: 34
  start-page: 1130
  year: 2007
  ident: 10.1016/j.mcm.2007.09.016_b18
  article-title: Integration using He’s homotopy perturbation method
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2006.04.019
– volume: 178
  start-page: 257
  year: 1999
  ident: 10.1016/j.mcm.2007.09.016_b3
  article-title: Homotopy perturbation technique
  publication-title: Computational Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(99)00018-3
– volume: 350
  start-page: 87
  year: 2006
  ident: 10.1016/j.mcm.2007.09.016_b6
  article-title: Homotopy perturbation method for solving boundary value problems
  publication-title: Physics Letters A
  doi: 10.1016/j.physleta.2005.10.005
– ident: 10.1016/j.mcm.2007.09.016_b14
  doi: 10.1016/j.physleta.2006.11.062
– volume: 30
  start-page: 1221
  year: 2006
  ident: 10.1016/j.mcm.2007.09.016_b9
  article-title: Homotopy perturbation method for pure nonlinear differential equation
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2005.08.180
– volume: 188
  start-page: 450
  year: 2007
  ident: 10.1016/j.mcm.2007.09.016_b15
  article-title: Numerical solutions of the nonlinear integro-differential equations: Wavelet-Galerkin method and homotopy perturbation method
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.10.001
– volume: 75
  start-page: 551
  year: 2007
  ident: 10.1016/j.mcm.2007.09.016_b21
  article-title: Inverse problem of diffusion equation by He’s homotopy perturbation method
  publication-title: Physica Scripta
  doi: 10.1088/0031-8949/75/4/031
– volume: 71
  start-page: 16
  year: 2006
  ident: 10.1016/j.mcm.2007.09.016_b19
  article-title: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2005.10.001
– ident: 10.1016/j.mcm.2007.09.016_b23
  doi: 10.1615/JPorMedia.v11.i8.50
– volume: 22
  start-page: 220
  year: 2006
  ident: 10.1016/j.mcm.2007.09.016_b20
  article-title: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/num.20071
– volume: 135
  start-page: 73
  year: 2003
  ident: 10.1016/j.mcm.2007.09.016_b5
  article-title: Homotopy perturbation method: A new nonlinear analytical technique
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/S0096-3003(01)00312-5
– volume: 36
  start-page: 182
  year: 2008
  ident: 10.1016/j.mcm.2007.09.016_b17
  article-title: Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2006.06.037
– volume: vol. 228
  year: 1997
  ident: 10.1016/j.mcm.2007.09.016_b2
– volume: 26
  start-page: 695
  year: 2005
  ident: 10.1016/j.mcm.2007.09.016_b10
  article-title: Application of homotopy perturbation method to nonlinear wave equations
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2005.03.006
– volume: 22
  start-page: 475
  year: 2006
  ident: 10.1016/j.mcm.2007.09.016_b13
  article-title: Newton-like iteration methods for solving non-linear equations
  publication-title: Communications in Numerical Methods in Engineering
  doi: 10.1002/cnm.832
– volume: 35
  start-page: 37
  year: 2000
  ident: 10.1016/j.mcm.2007.09.016_b4
  article-title: A coupling method of a homotopy technique and a perturbation technique for non-linear problems
  publication-title: International Journal of Non-Linear Mechanics
  doi: 10.1016/S0020-7462(98)00085-7
– ident: 10.1016/j.mcm.2007.09.016_b16
  doi: 10.1016/j.chaos.2006.09.070
– ident: 10.1016/j.mcm.2007.09.016_b12
  doi: 10.1016/j.amc.2006.09.019
– year: 1993
  ident: 10.1016/j.mcm.2007.09.016_b1
– volume: 35
  start-page: 843
  year: 2008
  ident: 10.1016/j.mcm.2007.09.016_b7
  article-title: Homotopy perturbation method for fractional KdV–Burgers equation
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2006.05.074
SSID ssj0005908
Score 2.3713686
Snippet Delay differential equations (denoted as DDE) have a wide range of application in science and engineering. They arise when the rate of change of a...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 486
SubjectTerms Applications in mathematical biology and engineering
Delay differential equations
Exact sciences and technology
Homotopy perturbation method
Mathematical analysis
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Sciences and techniques of general use
Title Solution of delay differential equations via a homotopy perturbation method
URI https://dx.doi.org/10.1016/j.mcm.2007.09.016
Volume 48
WOSCitedRecordID wos000256694400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9479
  dateEnd: 20131231
  omitProxy: false
  ssIdentifier: ssj0005908
  issn: 0895-7177
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwGEEF8T42PygRMoUxrbsXOsoFAYmzgM1FvkOLa2qU3L2lXbf89z_NFswIADl7SxnKbK-_X559f33g-hV6rKcl6zOmG64gml2iRCkjSptNaCinog21qYb5_54aGYTIovvZ4JtTDrKW8acXFRLP6rqWEMjG1LZ__B3PFDYQDeg9HhCGaH418ZPgS6LA20LSAvowjKykbH9fdzn_22tvVYb45tOt58cWkbGMPyUzlAOGHpLnM9iP1dfXcB5fUgnJjONCyBNlozHu7D_rDlxUBlZzqGnN-Nxh_Gwzaz4EAf1ydXYg4iZrz5QFgohvH-p-uzCpbADpF3HSwVHSCFoh7nL2nog-3OnCD1T17dBRhO92Zq5ptOFnvp4BcdtK-tbDHfMEspB6aX3kJbGWeF6KOt4cfR5NMmGahotQvj1w__f7eZgNdu-zsGc28hl2AC4wRROizl6AG677cXeOhg8RD1dPMI3e00nYSzjSWXj9F-gAueG9zCBXfhgiNcMMAFSxzggrtwwQ4uT9DX96Ojt-PEC2wkimR8lXCmCk1yYoysMlYxLllegZNXipBKmtwYJog0ggy0YTlNa3ipVZrLPJNUckm2Ub-ZN_opwnUha9ibSkLMgFqZs0qRgYTZhmggPHQHpeGhlcp3n7ciKNMypBmelvCcrSoqL9OihJEd9DpesnCtV26aTIMlSs8dHScsAUQ3XbZ7xWrxRgExz_404Tm6s_mFvED91dm5foluq_XqZHm263H2A69TmrI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+delay+differential+equations+via+a+homotopy+perturbation+method&rft.jtitle=Mathematical+and+computer+modelling&rft.au=SHAKERI%2C+Fatemeh&rft.au=DEHGHAN%2C+Mehdi&rft.date=2008-08-01&rft.pub=Elsevier+Science&rft.issn=0895-7177&rft.volume=48&rft.issue=3-4&rft.spage=486&rft.epage=498&rft_id=info:doi/10.1016%2Fj.mcm.2007.09.016&rft.externalDBID=n%2Fa&rft.externalDocID=20470560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-7177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-7177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-7177&client=summon