Sharp Bounds for Genetic Drift in Estimation of Distribution Algorithms
Estimation of distribution algorithms (EDAs) are a successful branch of evolutionary algorithms (EAs) that evolve a probabilistic model instead of a population. Analogous to genetic drift in EAs, EDAs also encounter the phenomenon that the random sampling in the model update can move the sampling fr...
Uloženo v:
| Vydáno v: | IEEE transactions on evolutionary computation Ročník 24; číslo 6; s. 1140 - 1149 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Estimation of distribution algorithms (EDAs) are a successful branch of evolutionary algorithms (EAs) that evolve a probabilistic model instead of a population. Analogous to genetic drift in EAs, EDAs also encounter the phenomenon that the random sampling in the model update can move the sampling frequencies to boundary values not justified by the fitness. This can result in a considerable performance loss. This article gives the first tight quantification of this effect for three EDAs and one ant colony optimizer, namely, for the univariate marginal distribution algorithm, the compact genetic algorithm, population-based incremental learning, and the max-min ant system with iteration-best update. Our results allow to choose the parameters of these algorithms in such a way that within a desired runtime, no sampling frequency approaches the boundary values without a clear indication from the objective function. |
|---|---|
| AbstractList | Estimation of distribution algorithms (EDAs) are a successful branch of evolutionary algorithms (EAs) that evolve a probabilistic model instead of a population. Analogous to genetic drift in EAs, EDAs also encounter the phenomenon that the random sampling in the model update can move the sampling frequencies to boundary values not justified by the fitness. This can result in a considerable performance loss. This article gives the first tight quantification of this effect for three EDAs and one ant colony optimizer, namely, for the univariate marginal distribution algorithm, the compact genetic algorithm, population-based incremental learning, and the max-min ant system with iteration-best update. Our results allow to choose the parameters of these algorithms in such a way that within a desired runtime, no sampling frequency approaches the boundary values without a clear indication from the objective function. |
| Author | Zheng, Weijie Doerr, Benjamin |
| Author_xml | – sequence: 1 givenname: Benjamin orcidid: 0000-0002-9786-220X surname: Doerr fullname: Doerr, Benjamin email: doerr@lix.polytechnique.fr organization: Laboratoire d’Informatique, CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France – sequence: 2 givenname: Weijie orcidid: 0000-0002-8483-0161 surname: Zheng fullname: Zheng, Weijie email: zhengwj13@tsinghua.org.cn organization: Department of Computer Science and Technology, Tsinghua University, Beijing, China |
| BackLink | https://hal.science/hal-04487372$$DView record in HAL |
| BookMark | eNp9kL1OwzAUhS0EEm3hARBLJCaGFP8kcTyWtrRIlRgoiM1yYoe6SuNiO0i8PU5TdWBgse-1zrn3-BuC88Y0CoAbBMcIQfawnr9PxxhiOMYspyRDZ2CAWIJiCHF2HmqYs5jS_OMSDJ3bQoiSFLEBWLxuhN1Hj6ZtpIsqY6OFapTXZTSzuvKRbqK583onvDZNZKpopp23umgP_aT-NFb7zc5dgYtK1E5dH-8ReHuar6fLePWyeJ5OVnFJMPUxRbAoYIlzkuckwZJVCJdZSopU4lQhkWCWSklCUCylUBUtpVK0CBWSMhxkBO77uRtR870NwewPN0Lz5WTFuzeYJOH_FH932rteu7fmq1XO861pbRPicZxkNKwieRZUqFeV1jhnVXUaiyDv2PKOLe_Y8iPb4KF_PKX2B0TeCl3_67ztnVopddrEYJZQDMkvOE6IKQ |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1145_3472304 crossref_primary_10_1016_j_ic_2023_105125 crossref_primary_10_1109_TEVC_2023_3290670 crossref_primary_10_1109_ACCESS_2022_3162634 crossref_primary_10_1162_evco_a_00361 crossref_primary_10_1109_JSAC_2023_3280970 crossref_primary_10_1109_TEVC_2023_3314105 crossref_primary_10_1016_j_tcs_2022_08_014 crossref_primary_10_1007_s00453_024_01281_w crossref_primary_10_1016_j_apenergy_2024_124601 crossref_primary_10_1016_j_tcs_2024_114622 crossref_primary_10_1109_TEVC_2021_3139304 crossref_primary_10_1007_s00453_020_00780_w crossref_primary_10_1016_j_tcs_2023_114074 crossref_primary_10_1109_TEVC_2022_3229038 |
| Cites_doi | 10.1007/978-3-030-29414-4_9 10.1007/978-1-4471-0819-1_39 10.1007/978-3-540-34954-9_3 10.1007/978-3-662-12788-9_6 10.1145/3321707.3321747 10.1007/3-540-61723-X_982 10.1145/3205455.3205623 10.1109/ICEC.1998.700083 10.1016/j.tcs.2018.09.024 10.1016/j.tcs.2018.06.004 10.1162/evco.1999.7.4.353 10.1016/B978-1-55860-377-6.50014-1 10.1007/978-3-7091-6230-9_56 10.1016/S0004-3702(01)00058-3 10.1145/2908812.2908895 10.1016/j.orl.2006.11.005 10.1007/s00453-018-0480-z 10.1007/s00453-018-0463-0 10.1145/3205455.3205576 10.2307/3211856 10.1007/s11047-006-9001-0 10.1162/EVCO_a_00047 10.1007/3-540-58484-6_253 10.1145/1830483.1830493 10.1145/3299904.3340316 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 1XC VOOES |
| DOI | 10.1109/TEVC.2020.2987361 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1149 |
| ExternalDocumentID | oai:HAL:hal-04487372v1 10_1109_TEVC_2020_2987361 9064720 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Program for University Key Laboratory of Guangdong Province grantid: 2017KSYS008 funderid: 10.13039/501100010226 – fundername: Program for Guangdong Introducing Innovative and Enterpreneurial Teams grantid: 2017ZT07X386 funderid: 10.13039/501100007162 – fundername: Investissement d’Avenir Project, LabEx LMH, in a joint call with Gaspard Monge Program for optimization, operations research and their interactions with data sciences grantid: ANR-11-LABX-0056-LMH funderid: 10.13039/501100001665 – fundername: Science and Technology Innovation Committee Foundation of Shenzhen grantid: JCYJ20190809121403553 funderid: 10.13039/501100010877 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2019A1515110177 funderid: 10.13039/501100007162 – fundername: Shenzhen Peacock Plan grantid: KQTD2016112514355531 funderid: 10.13039/501100012234 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c327t-710bb0c28388342d9f12c653b5d25e1a4295dd37782ddaef7cdee7baef1ddef13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000595525700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Tue Oct 14 20:31:43 EDT 2025 Sun Nov 09 07:33:40 EST 2025 Sat Nov 29 03:13:48 EST 2025 Tue Nov 18 21:35:27 EST 2025 Wed Aug 27 02:32:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c327t-710bb0c28388342d9f12c653b5d25e1a4295dd37782ddaef7cdee7baef1ddef13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9786-220X 0000-0002-8483-0161 |
| OpenAccessLink | https://hal.science/hal-04487372 |
| PQID | 2467295386 |
| PQPubID | 85418 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2020_2987361 proquest_journals_2467295386 ieee_primary_9064720 crossref_citationtrail_10_1109_TEVC_2020_2987361 hal_primary_oai_HAL_hal_04487372v1 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref15 ref14 ref11 ref10 de bonet (ref2) 1996 ref1 ref17 ref16 ref19 ref18 baluja (ref6) 1994 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref5 motoo (ref12) 1964; 1 |
| References_xml | – ident: ref11 doi: 10.1007/978-3-030-29414-4_9 – ident: ref3 doi: 10.1007/978-1-4471-0819-1_39 – ident: ref5 doi: 10.1007/978-3-540-34954-9_3 – ident: ref24 doi: 10.1007/978-3-662-12788-9_6 – ident: ref23 doi: 10.1145/3321707.3321747 – ident: ref8 doi: 10.1007/3-540-61723-X_982 – ident: ref1 doi: 10.1145/3205455.3205623 – ident: ref10 doi: 10.1109/ICEC.1998.700083 – ident: ref26 doi: 10.1016/j.tcs.2018.09.024 – ident: ref21 doi: 10.1016/j.tcs.2018.06.004 – ident: ref4 doi: 10.1162/evco.1999.7.4.353 – ident: ref7 doi: 10.1016/B978-1-55860-377-6.50014-1 – start-page: 424 year: 1996 ident: ref2 article-title: Mimic: Finding optima by estimating probability densities publication-title: Advances in neural information processing systems – year: 1994 ident: ref6 article-title: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning – ident: ref14 doi: 10.1007/978-3-7091-6230-9_56 – ident: ref22 doi: 10.1016/S0004-3702(01)00058-3 – ident: ref19 doi: 10.1145/2908812.2908895 – ident: ref16 doi: 10.1016/j.orl.2006.11.005 – ident: ref20 doi: 10.1007/s00453-018-0480-z – ident: ref17 doi: 10.1007/s00453-018-0463-0 – ident: ref18 doi: 10.1145/3205455.3205576 – volume: 1 start-page: 177 year: 1964 ident: ref12 article-title: Diffusion models in population genetics publication-title: J Appl Probab doi: 10.2307/3211856 – ident: ref15 doi: 10.1007/s11047-006-9001-0 – ident: ref25 doi: 10.1162/EVCO_a_00047 – ident: ref13 doi: 10.1007/3-540-58484-6_253 – ident: ref9 doi: 10.1145/1830483.1830493 – ident: ref27 doi: 10.1145/3299904.3340316 |
| SSID | ssj0014519 |
| Score | 2.5459938 |
| Snippet | Estimation of distribution algorithms (EDAs) are a successful branch of evolutionary algorithms (EAs) that evolve a probabilistic model instead of a... |
| SourceID | hal proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1140 |
| SubjectTerms | Computational modeling Computer Science Drift estimation Estimation of distribution algorithms (EDAs) Evolutionary algorithms Genetic algorithms genetic drift Genetics Iterative methods Machine learning Probabilistic logic Probabilistic models Random sampling running time analysis Sociology Statistics theory Time-frequency analysis |
| Title | Sharp Bounds for Genetic Drift in Estimation of Distribution Algorithms |
| URI | https://ieeexplore.ieee.org/document/9064720 https://www.proquest.com/docview/2467295386 https://hal.science/hal-04487372 |
| Volume | 24 |
| WOSCitedRecordID | wos000595525700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYG4gAHHhuI8VKEOCEKbfrMcYzBDghxALRblebBJsGGtsHvx26zCgRC4ha1TtXma2I7sT8DnKgiS3kRWs8Ym3iRkcKTgieejXQUKRnTVn9ZbCK9u8sGA3HfgLM6F8YYUwafmXNqlmf5eqLeaavsQlBmJEcHfSlNkypXqz4xIJqUKpheoMWYDdwJZuCLi4feUxc9Qe6fc_SwwyT4poOWhhQBWZZW-bEel0rmeuN_r7cJ686YZJ0K_S1omHETNhaFGpibt01Y-8I62IRVMjArfuYW3BBj8xu7pOpKM4YWLCMiarzHrqYjO2ejMeuhaJXgyCaWXRHTriuSxTovz5PpaD58nW3D43Xvodv3XHEFT4U8nVMMZlH4Cq2LLAsjroUNuErisIg1j00gUU_FWoc4lFxraWyqtDFpga0AV0QbhDuwPJ6MzS6wFJ8jY5VZkxEdmpTYNYmNRFtTSiGKNviL4c6VYx6nAhgveemB-CInhHJCKHcIteG07vJW0W78JXyMGNZyRJjd79zmdM1H75MK8XygUIsQq6UcWG04WECeu9k7yzlqD_yGMEv2fu-1D6v0AlVYywEsz6fv5hBW1AeiNz0qf8xPyJLfmg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BhwR7GKMw0Y1t1rQnRErifPqxg7JO6yoeCuqb5fhjVIK2agt__-4SN2LaNGlvVnKOEv9i35199zuAz7oscl7GLrDWZUFilQiU4FngEpMkWqW01V8Vm8hHo2IyEddbcNbkwlhrq-Az26VmdZZv5vqRtsrOBWVGcnTQX6RJwsM6W6s5MyCilDqcXqDNWEz8GWYUivNx__YCfUEedjn62HEW_aaFtu8oBrIqrvLHilypmav9_3vB1_DKm5OsV-N_AFt21ob9TakG5mduG14-4x1swx6ZmDVD8yF8Jc7mBftC9ZVWDG1YRlTUeI9dLqduzaYz1kfROsWRzR27JK5dXyaL9e5_zpfT9d3D6ghurvrji0HgyysEOub5mqIwyzLUaF8URZxwI1zEdZbGZWp4aiOFmio1Jsah5MYo63JtrM1LbEW4JroofgOt2Xxmj4Hl-ByV6sLZggjRlMKuWWoVWptKCVF2INwMt9See5xKYNzLygcJhSSEJCEkPUIdOG26LGrijX8Jf0IMGzmizB70hpKuheh_UimeJxQ6JMQaKQ9WB042kEs_f1eSo_7Ab4iL7O3fe32E3cH4x1AOv42-v4M9epk6yOUEWuvlo30PO_oJkVx-qH7SX5Ff4uE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sharp+Bounds+for+Genetic+Drift+in+Estimation+of+Distribution+Algorithms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Doerr%2C+Benjamin&rft.au=Zheng%2C+Weijie&rft.date=2020-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=24&rft.issue=6&rft.spage=1140&rft_id=info:doi/10.1109%2FTEVC.2020.2987361&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |