Frames, graphs and erasures

Two-uniform frames and their use for the coding of vectors are the main subject of this paper. These frames are known to be optimal for handling up to two erasures, in the sense that they minimize the largest possible error when up to two frame coefficients are set to zero. Here, we consider various...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Linear algebra and its applications Ročník 404; s. 118 - 146
Hlavní autori: Bodmann, Bernhard G., Paulsen, Vern I.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Elsevier Inc 15.07.2005
Elsevier Science
Predmet:
ISSN:0024-3795, 1873-1856
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Two-uniform frames and their use for the coding of vectors are the main subject of this paper. These frames are known to be optimal for handling up to two erasures, in the sense that they minimize the largest possible error when up to two frame coefficients are set to zero. Here, we consider various numerical measures for the reconstruction error associated with a frame when an arbitrary number of the frame coefficients of a vector are lost. We derive general error bounds for two-uniform frames when more than two erasures occur and apply these to concrete examples. We show that among the 227 known equivalence classes of two-uniform (36, 15)-frames arising from Hadamard matrices, there are 5 that give smallest error bounds for up to 8 erasures.
AbstractList Two-uniform frames and their use for the coding of vectors are the main subject of this paper. These frames are known to be optimal for handling up to two erasures, in the sense that they minimize the largest possible error when up to two frame coefficients are set to zero. Here, we consider various numerical measures for the reconstruction error associated with a frame when an arbitrary number of the frame coefficients of a vector are lost. We derive general error bounds for two-uniform frames when more than two erasures occur and apply these to concrete examples. We show that among the 227 known equivalence classes of two-uniform (36, 15)-frames arising from Hadamard matrices, there are 5 that give smallest error bounds for up to 8 erasures.
Author Bodmann, Bernhard G.
Paulsen, Vern I.
Author_xml – sequence: 1
  givenname: Bernhard G.
  surname: Bodmann
  fullname: Bodmann, Bernhard G.
  email: bgb@math.uh.edu
– sequence: 2
  givenname: Vern I.
  surname: Paulsen
  fullname: Paulsen, Vern I.
  email: vern@math.uh.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16886045$$DView record in Pascal Francis
BookMark eNp9kE1Lw0AURQepYFv9AeKmG3cmvplkPoIrKVaFghtdDy-TNzolTcpMFPz3plQQXHT14HLOhXdnbNL1HTF2ySHnwNXtJm8RcwEgcxD5mJywKTe6yLiRasKmAKLMCl3JMzZLaQMApQYxZVeriFtKN4v3iLuPtMCuWVDE9BkpnbNTj22ii987Z2-rh9flU7Z-eXxe3q8zVwg9ZErWnvPGl5VD4aQmVFQr77zxXqCuvTZY1iWQ4yBVZQoHlZG1lrziysiqmLPrQ-8Ok8PWR-xcSHYXwxbjtx0ho6CUI8cPnIt9SpH8HwJ2v4Ld2HEFu1_BgrBjMjr6n-PCgEPouyFiaI-adweTxte_AkWbXKDOURMiucE2fThi_wC29Xbv
CODEN LAAPAW
CitedBy_id crossref_primary_10_1007_s10444_013_9339_7
crossref_primary_10_1007_s11425_016_9143_2
crossref_primary_10_1080_03081080701470435
crossref_primary_10_1016_j_acha_2016_04_002
crossref_primary_10_1007_s10440_011_9667_x
crossref_primary_10_1016_j_laa_2018_03_021
crossref_primary_10_1109_TIT_2014_2320937
crossref_primary_10_1155_2014_836731
crossref_primary_10_1016_j_laa_2006_05_008
crossref_primary_10_1016_j_jmaa_2012_03_040
crossref_primary_10_1016_j_phycom_2011_09_007
crossref_primary_10_1073_pnas_0507888103
crossref_primary_10_1016_j_laa_2009_07_016
crossref_primary_10_1007_s40065_019_0246_8
crossref_primary_10_1016_j_laa_2016_09_005
crossref_primary_10_1007_s00041_015_9408_z
crossref_primary_10_1007_s13226_019_0325_8
crossref_primary_10_1016_j_laa_2007_05_043
crossref_primary_10_1080_03081087_2018_1466864
crossref_primary_10_1007_s10444_015_9440_1
crossref_primary_10_1016_j_laa_2010_02_017
crossref_primary_10_1016_j_jfa_2013_08_012
crossref_primary_10_1109_ACCESS_2018_2872716
crossref_primary_10_1016_j_laa_2018_05_025
crossref_primary_10_1016_j_laa_2010_07_027
crossref_primary_10_1016_j_laa_2013_01_020
crossref_primary_10_1080_03081087_2025_2464649
crossref_primary_10_1109_TSP_2007_908963
crossref_primary_10_1016_j_laa_2018_07_016
crossref_primary_10_1007_s00041_009_9065_1
crossref_primary_10_1016_j_laa_2009_12_017
crossref_primary_10_1016_j_acha_2006_05_010
crossref_primary_10_1080_03081087_2022_2093320
crossref_primary_10_1016_j_acha_2018_02_004
crossref_primary_10_1109_TIT_2011_2146150
crossref_primary_10_1007_s10444_017_9566_4
crossref_primary_10_1109_ACCESS_2018_2886304
crossref_primary_10_1007_s00041_014_9347_0
crossref_primary_10_1016_j_acha_2006_07_003
crossref_primary_10_1016_j_laa_2011_02_022
crossref_primary_10_1007_s10444_020_09762_6
crossref_primary_10_1016_j_laa_2015_04_017
crossref_primary_10_1016_j_laa_2020_06_005
crossref_primary_10_1007_s00025_018_0781_1
crossref_primary_10_1186_s13634_017_0501_0
crossref_primary_10_1109_TIT_2015_2429634
crossref_primary_10_1109_TSP_2010_2047330
crossref_primary_10_14232_actasm_017_837_2
crossref_primary_10_1016_j_laa_2021_10_010
crossref_primary_10_1155_2013_837129
crossref_primary_10_1080_03081087_2019_1593924
crossref_primary_10_1007_s00041_015_9404_3
crossref_primary_10_1016_j_jat_2007_08_002
crossref_primary_10_1109_MSP_2007_4286567
crossref_primary_10_1016_j_acha_2012_03_011
crossref_primary_10_1016_j_procs_2018_04_293
crossref_primary_10_1080_03081087_2017_1347135
crossref_primary_10_1016_j_acha_2018_09_004
crossref_primary_10_1109_TSP_2011_2162955
crossref_primary_10_1090_btran_223
crossref_primary_10_1007_s10444_011_9241_0
crossref_primary_10_1016_j_laa_2009_05_001
crossref_primary_10_1109_ACCESS_2016_2613549
crossref_primary_10_1109_TIT_2007_909105
crossref_primary_10_1016_j_laa_2009_08_031
crossref_primary_10_1016_j_jfa_2009_08_015
crossref_primary_10_1002_mana_201700149
crossref_primary_10_1016_j_laa_2012_01_024
crossref_primary_10_1109_MSP_2007_904809
crossref_primary_10_1002_mma_7265
crossref_primary_10_1007_s12044_023_00743_5
crossref_primary_10_1007_s43036_023_00314_5
crossref_primary_10_1002_mma_8742
crossref_primary_10_1007_s11785_024_01516_2
crossref_primary_10_1016_j_laa_2011_03_043
crossref_primary_10_1080_03081087_2022_2030658
crossref_primary_10_1002_mma_9959
crossref_primary_10_1016_j_laa_2010_11_049
crossref_primary_10_1016_j_laa_2011_06_027
crossref_primary_10_1016_j_acha_2008_03_001
Cites_doi 10.1002/sapm1933121311
10.4153/CJM-1967-091-8
10.1023/A:1021349819855
10.1006/acha.2000.0340
10.1016/S1063-5203(03)00023-X
10.1007/978-1-4757-6568-7
10.1016/0012-365X(75)90029-1
10.1215/S0012-7094-44-01108-7
10.1007/BFb0092256
10.1016/j.laa.2003.07.012
10.1109/18.650985
ContentType Journal Article
Copyright 2005 Elsevier Inc.
2005 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier Inc.
– notice: 2005 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.laa.2005.02.016
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 146
ExternalDocumentID 16886045
10_1016_j_laa_2005_02_016
S0024379505000972
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
T9H
TN5
TWZ
WH7
WUQ
XPP
YQT
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-65bf11df49ca2c57ea6eb6fcf8ff2a7bf78a4b40ec1056983c0985b7519168593
ISICitedReferencesCount 112
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000230252900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-3795
IngestDate Mon Jul 21 09:14:43 EDT 2025
Sat Nov 29 05:08:42 EST 2025
Tue Nov 18 20:59:31 EST 2025
Fri Feb 23 02:30:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Frames
Codes
Erasures
Primary 46L05
47A20
Hadamard matrix
Secondary 46A22
Conference matrix
Error bounds
Graphs
46M10
Two-graphs
46H25
Error estimation
47A20 Frames
Error bound
Erasure
Graph theory
Code
Equivalence classes
Coding
Primary
Hadamard transformation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-65bf11df49ca2c57ea6eb6fcf8ff2a7bf78a4b40ec1056983c0985b7519168593
OpenAccessLink https://dx.doi.org/10.1016/j.laa.2005.02.016
PageCount 29
ParticipantIDs pascalfrancis_primary_16886045
crossref_primary_10_1016_j_laa_2005_02_016
crossref_citationtrail_10_1016_j_laa_2005_02_016
elsevier_sciencedirect_doi_10_1016_j_laa_2005_02_016
PublicationCentury 2000
PublicationDate 2005-07-15
PublicationDateYYYYMMDD 2005-07-15
PublicationDate_xml – month: 07
  year: 2005
  text: 2005-07-15
  day: 15
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Linear algebra and its applications
PublicationYear 2005
Publisher Elsevier Inc
Elsevier Science
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science
References J.J. Seidel, A survey of two-graphs, in: Proc. Intern. Coll. Teorie Combinatorie (Roma 1973), Accad. Naz. Lincei, Roma, 1976, pp. 481–511
Goethals, Seidel (bib4) 1967; 19
Goethals, Seidel (bib5) 1975; 12
R.B. Holmes, Optimal frames, Ph.D. thesis, University of Houston, 2003
Strohmer, Heath (bib13) 2003; 14
Paley (bib10) 1933; 12
Williamson (bib14) 1944; 11
F.C. Bussemaker, R.A. Mathon, J.J. Seidel, Tables of two-graphs, combinatorics and graph theory, in: S.B. Rao (Ed.), Lecture Notes in Mathematics, vol. 885, pp. 70–112
J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, third ed., Grundlehren der mathematischen Wissenschaften, no. 290, Springer-Verlag, 1999
Goyal, Kovacević, Kelner (bib6) 2001; 10
Casazza, Kovacevic (bib2) 2003; 18
Goyal, Vetterli, Thao (bib7) 1998; 44
Holmes, Paulsen (bib9) 2004; 377
E. Spence, Strongly regular graphs on at most 64 vertices, June 2003. Available from
Goyal (10.1016/j.laa.2005.02.016_bib6) 2001; 10
10.1016/j.laa.2005.02.016_bib3
10.1016/j.laa.2005.02.016_bib1
Goethals (10.1016/j.laa.2005.02.016_bib5) 1975; 12
10.1016/j.laa.2005.02.016_bib8
10.1016/j.laa.2005.02.016_bib11
10.1016/j.laa.2005.02.016_bib12
Goethals (10.1016/j.laa.2005.02.016_bib4) 1967; 19
Goyal (10.1016/j.laa.2005.02.016_bib7) 1998; 44
Casazza (10.1016/j.laa.2005.02.016_bib2) 2003; 18
Williamson (10.1016/j.laa.2005.02.016_bib14) 1944; 11
Strohmer (10.1016/j.laa.2005.02.016_bib13) 2003; 14
Holmes (10.1016/j.laa.2005.02.016_bib9) 2004; 377
Paley (10.1016/j.laa.2005.02.016_bib10) 1933; 12
References_xml – volume: 12
  start-page: 311
  year: 1933
  end-page: 320
  ident: bib10
  article-title: On orthogonal matrices
  publication-title: J. Math. Phys.
– reference: J.J. Seidel, A survey of two-graphs, in: Proc. Intern. Coll. Teorie Combinatorie (Roma 1973), Accad. Naz. Lincei, Roma, 1976, pp. 481–511
– reference: J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, third ed., Grundlehren der mathematischen Wissenschaften, no. 290, Springer-Verlag, 1999
– reference: F.C. Bussemaker, R.A. Mathon, J.J. Seidel, Tables of two-graphs, combinatorics and graph theory, in: S.B. Rao (Ed.), Lecture Notes in Mathematics, vol. 885, pp. 70–112
– volume: 19
  start-page: 1001
  year: 1967
  end-page: 1010
  ident: bib4
  article-title: Orthogonal matrices with zero diagonal
  publication-title: Canad. J. Math.
– reference: R.B. Holmes, Optimal frames, Ph.D. thesis, University of Houston, 2003
– reference: E. Spence, Strongly regular graphs on at most 64 vertices, June 2003. Available from:
– volume: 18
  start-page: 387
  year: 2003
  end-page: 430
  ident: bib2
  article-title: Equal-norm tight frames with erasures
  publication-title: Adv. Comput. Math.
– volume: 14
  start-page: 257
  year: 2003
  end-page: 275
  ident: bib13
  article-title: Grassmannian frames with applications to coding and communication
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 44
  start-page: 16
  year: 1998
  end-page: 31
  ident: bib7
  article-title: Quantized overcomplete expansions in
  publication-title: IEEE Trans. Inform. Theory
– volume: 377
  start-page: 31
  year: 2004
  end-page: 51
  ident: bib9
  article-title: Optimal frames for erasures
  publication-title: Linear Algebra Appl.
– volume: 12
  start-page: 143
  year: 1975
  end-page: 158
  ident: bib5
  article-title: The regular two-graph on 276 vertices
  publication-title: Discrete Math.
– volume: 11
  start-page: 65
  year: 1944
  end-page: 81
  ident: bib14
  article-title: Hadamard’s determinant theorem and the sum of four squares
  publication-title: Duke Math. J.
– volume: 10
  start-page: 203
  year: 2001
  end-page: 233
  ident: bib6
  article-title: Quantized frame expansions with erasures
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 12
  start-page: 311
  year: 1933
  ident: 10.1016/j.laa.2005.02.016_bib10
  article-title: On orthogonal matrices
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm1933121311
– volume: 19
  start-page: 1001
  year: 1967
  ident: 10.1016/j.laa.2005.02.016_bib4
  article-title: Orthogonal matrices with zero diagonal
  publication-title: Canad. J. Math.
  doi: 10.4153/CJM-1967-091-8
– volume: 18
  start-page: 387
  year: 2003
  ident: 10.1016/j.laa.2005.02.016_bib2
  article-title: Equal-norm tight frames with erasures
  publication-title: Adv. Comput. Math.
  doi: 10.1023/A:1021349819855
– volume: 10
  start-page: 203
  issue: 3
  year: 2001
  ident: 10.1016/j.laa.2005.02.016_bib6
  article-title: Quantized frame expansions with erasures
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.2000.0340
– ident: 10.1016/j.laa.2005.02.016_bib8
– volume: 14
  start-page: 257
  year: 2003
  ident: 10.1016/j.laa.2005.02.016_bib13
  article-title: Grassmannian frames with applications to coding and communication
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/S1063-5203(03)00023-X
– ident: 10.1016/j.laa.2005.02.016_bib3
  doi: 10.1007/978-1-4757-6568-7
– volume: 12
  start-page: 143
  year: 1975
  ident: 10.1016/j.laa.2005.02.016_bib5
  article-title: The regular two-graph on 276 vertices
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(75)90029-1
– volume: 11
  start-page: 65
  year: 1944
  ident: 10.1016/j.laa.2005.02.016_bib14
  article-title: Hadamard’s determinant theorem and the sum of four squares
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-44-01108-7
– ident: 10.1016/j.laa.2005.02.016_bib12
– ident: 10.1016/j.laa.2005.02.016_bib1
  doi: 10.1007/BFb0092256
– ident: 10.1016/j.laa.2005.02.016_bib11
– volume: 377
  start-page: 31
  year: 2004
  ident: 10.1016/j.laa.2005.02.016_bib9
  article-title: Optimal frames for erasures
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2003.07.012
– volume: 44
  start-page: 16
  issue: 1
  year: 1998
  ident: 10.1016/j.laa.2005.02.016_bib7
  article-title: Quantized overcomplete expansions in Rn: analysis, synthesis, and algorithms
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.650985
SSID ssj0004702
Score 2.1711283
Snippet Two-uniform frames and their use for the coding of vectors are the main subject of this paper. These frames are known to be optimal for handling up to two...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 118
SubjectTerms Algebra
Codes
Conference matrix
Erasures
Error bounds
Exact sciences and technology
Frames
Graphs
Hadamard matrix
Linear and multilinear algebra, matrix theory
Mathematics
Sciences and techniques of general use
Two-graphs
Title Frames, graphs and erasures
URI https://dx.doi.org/10.1016/j.laa.2005.02.016
Volume 404
WOSCitedRecordID wos000230252900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0004702
  issn: 0024-3795
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUo9FBUVf1CfLQoh56qBjmOHdvHbbuoVLCtVKj2FtmOLYFQWG0WxM9nHDvZQFvaHrhEKyfZZP28z-PxzDyE3uWWmVwXLs2pMCkFkyAVRZWnmVaVroAylWrrzB7yyURMp_J7VKZrWjkBXtfi-lrOHhRqaAOwfersf8Ddfyk0wGcAHY4AOxz_Cfh9H27VotMWow41mO28dQU2Q1sUlqG-io8X-oAlc7-LMNzS7hfr3z4fjSZtRMBHO699ptZAlGt0cvhj3J786XXVDm55Eph3UYZcyuDe6lJcIqsMaZNQYKKghtnRJsV0QHxZZNEwh0a34i_0HDwFZ3vnSkV3FtnD2W9KYd-ZovrAwawQogAr9BFaI5xJYOK10cF4-nWZCstxLBAf3rjbyG5D-u489k-myNOZauAP4oKyycDcOH6OnsV1QjIK-L5AK7Z-idaP-iK7zSu0E5D-kAScEwAw6XB-jU72x8efvqRR6yI1OeGLtGDaZVnlqDSKGMatKqzPw3LCOaK4dlwoqim2BgziQorcYCmY5mCAQ58wmW-g1fqitpsosaySlZaYaOVopZzwevc4c5JgoqzlWwh3P7s0sRC81yM5L7uIv7MSesoLlLISkxJattD7_pZZqIJy38W068symnHBPCthGNx32-6tfl8-KGK-_bcLdtCT5bB-g1YX80v7Fj02V4vTZr4bR8oNV19rXg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frames%2C+graphs+and+erasures&rft.jtitle=Linear+algebra+and+its+applications&rft.au=BODMANN%2C+Bernhard+G&rft.au=PAULSEN%2C+Vern+I&rft.date=2005-07-15&rft.pub=Elsevier+Science&rft.issn=0024-3795&rft.volume=404&rft.spage=118&rft.epage=146&rft_id=info:doi/10.1016%2Fj.laa.2005.02.016&rft.externalDBID=n%2Fa&rft.externalDocID=16886045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon