Frames, graphs and erasures

Two-uniform frames and their use for the coding of vectors are the main subject of this paper. These frames are known to be optimal for handling up to two erasures, in the sense that they minimize the largest possible error when up to two frame coefficients are set to zero. Here, we consider various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications Jg. 404; S. 118 - 146
Hauptverfasser: Bodmann, Bernhard G., Paulsen, Vern I.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Elsevier Inc 15.07.2005
Elsevier Science
Schlagworte:
ISSN:0024-3795, 1873-1856
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-uniform frames and their use for the coding of vectors are the main subject of this paper. These frames are known to be optimal for handling up to two erasures, in the sense that they minimize the largest possible error when up to two frame coefficients are set to zero. Here, we consider various numerical measures for the reconstruction error associated with a frame when an arbitrary number of the frame coefficients of a vector are lost. We derive general error bounds for two-uniform frames when more than two erasures occur and apply these to concrete examples. We show that among the 227 known equivalence classes of two-uniform (36, 15)-frames arising from Hadamard matrices, there are 5 that give smallest error bounds for up to 8 erasures.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2005.02.016