The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves
Multiple-soliton solutions for three model equations for shallow water waves are determined. The three models are completely integrable. The Hirota bilinear method is used to determine multiple-soliton solutions of sech-squared type for these equations. The tanh–coth method is used to obtain single...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 201; číslo 1; s. 489 - 503 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
Elsevier Inc
15.07.2008
Elsevier |
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Multiple-soliton solutions for three model equations for shallow water waves are determined. The three models are completely integrable. The Hirota bilinear method is used to determine multiple-soliton solutions of sech-squared type for these equations. The tanh–coth method is used to obtain single soliton solutions and other solutions for these three models. The three models have different linear dispersion relations, but possess the same coefficients for the polynomials of exponentials. |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2007.12.037 |