FIML estimation of dynamic econometric systems from inconsistent data

Economic data are typically inconsistent, contain measurement errors and are sometimes unavailable. The paper therefore proposes a bayesian and a generalized least-squares procedure for adjusting the data to satisfy accounting identities, to incorporate subjective views and to recover unobserved dat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of systems science Ročník 16; číslo 1; s. 1 - 29
Hlavní autor: PLOEG, F. VAN DER
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis Group 01.01.1985
ISSN:0020-7721, 1464-5319
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Economic data are typically inconsistent, contain measurement errors and are sometimes unavailable. The paper therefore proposes a bayesian and a generalized least-squares procedure for adjusting the data to satisfy accounting identities, to incorporate subjective views and to recover unobserved data. The resulting posterior observations may be used to estimate the parameters of a multivariate ARMAX model of the economy by maximizing the appropriate log-likelihood criterion subject to the constraints of the Kalman-Bucy filter (generating the optimal estimates of the states of the economy). The paper proposes a generalized reduced-gradient algorithm, based on a state space realization of the ARMAX model, for the estimation procedure, and discusses a number of special cases where the filter need not be implemented. Extensions to the estimation of continuous-time or non-linear models from noisy data are also provided. When the original data contain systematic errors time-decomposition is not valid, hence the paper develops a final form estimation procedure for the general case. The paper reports applications of the proposed techniques to U.K. data.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0020-7721
1464-5319
DOI:10.1080/00207728508926652