Extensions of Faddeev’s algorithms to polynomial matrices

Starting from algorithms introduced in [Ky M. Vu, An extension of the Faddeev’s algorithms, in: Proceedings of the IEEE Multi-conference on Systems and Control on September 3–5th, 2008, San Antonio, TX] which are applicable to one-variable regular polynomial matrices, we introduce two dual extension...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 214; číslo 1; s. 246 - 258
Hlavní autoři: Stanimirović, Predrag S., Tasić, Milan B., Vu, Ky M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.08.2009
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Starting from algorithms introduced in [Ky M. Vu, An extension of the Faddeev’s algorithms, in: Proceedings of the IEEE Multi-conference on Systems and Control on September 3–5th, 2008, San Antonio, TX] which are applicable to one-variable regular polynomial matrices, we introduce two dual extensions of the Faddeev’s algorithm to one-variable rectangular or singular matrices. Corresponding algorithms for symbolic computing the Drazin and the Moore–Penrose inverse are introduced. These algorithms are alternative with respect to previous representations of the Moore–Penrose and the Drazin inverse of one-variable polynomial matrices based on the Leverrier–Faddeev’s algorithm. Complexity analysis is performed. Algorithms are implemented in the symbolic computational package MATHEMATICA and illustrative test examples are presented.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2009.03.076