Approximation algorithms for maximum cut with limited unbalance

We consider the problem of partitioning the vertices of a weighted graph into two sets of sizes that differ at most by a given threshold B , so as to maximize the weight of the crossing edges. For B equal to 0 this problem is known as Max Bisection, whereas for B equal to the number n of nodes it is...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical computer science Ročník 385; číslo 1; s. 78 - 87
Hlavní autori: Galbiati, Giulia, Maffioli, Francesco
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 15.10.2007
Elsevier
Predmet:
ISSN:0304-3975, 1879-2294
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We consider the problem of partitioning the vertices of a weighted graph into two sets of sizes that differ at most by a given threshold B , so as to maximize the weight of the crossing edges. For B equal to 0 this problem is known as Max Bisection, whereas for B equal to the number n of nodes it is the maximum cut problem. We present polynomial time randomized approximation algorithms with non trivial performance guarantees for its solution. The approximation results are obtained by extending the methodology used by Y. Ye for Max Bisection and by combining this technique with another one that uses the algorithm of Goemans and Williamson for the maximum cut problem. When B is equal to zero the approximation ratio achieved coincides with the one obtained by Y. Ye; otherwise it is always above this value and tends to the value obtained by Goemans and Williamson as B approaches the number n of nodes.
AbstractList We consider the problem of partitioning the vertices of a weighted graph into two sets of sizes that differ at most by a given threshold B , so as to maximize the weight of the crossing edges. For B equal to 0 this problem is known as Max Bisection, whereas for B equal to the number n of nodes it is the maximum cut problem. We present polynomial time randomized approximation algorithms with non trivial performance guarantees for its solution. The approximation results are obtained by extending the methodology used by Y. Ye for Max Bisection and by combining this technique with another one that uses the algorithm of Goemans and Williamson for the maximum cut problem. When B is equal to zero the approximation ratio achieved coincides with the one obtained by Y. Ye; otherwise it is always above this value and tends to the value obtained by Goemans and Williamson as B approaches the number n of nodes.
Author Maffioli, Francesco
Galbiati, Giulia
Author_xml – sequence: 1
  givenname: Giulia
  surname: Galbiati
  fullname: Galbiati, Giulia
  email: giulia.galbiati@unipv.it
  organization: Dipartimento di Informatica e Sistemistica, Università degli Studi di Pavia, 27100 Pavia, Italy
– sequence: 2
  givenname: Francesco
  surname: Maffioli
  fullname: Maffioli, Francesco
  email: maffioli@elet.polimi.it
  organization: Dipartimento di Elettronica e Informazione, Politecnico di Milano, 20133 Milano, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19121733$$DView record in Pascal Francis
BookMark eNp9kD1PwzAQhi0EEm3hB7BlYUw420mciAFVFV9SJRaYLce5gKskjmyXj3-PSxEDQ71Ysu-5u_eZk-PRjkjIBYWMAi2vNlnQPmMAIoMiA14ekRmtRJ0yVufHZAYc8pTXojglc-83EE8hyhm5WU6Ts59mUMHYMVH9q3UmvA0-6axLBhV_tkOityH5iM9JbwYTsE22Y6N6NWo8Iyed6j2e_94L8nJ3-7x6SNdP94-r5TrVnImQ5sAqgQpK2oimLnlT6bzURZtj2-R5KxTTKIoGaQ28YlXFODCBRSO06jgK4Atyue87Ka9V37k43Hg5ubi5-5K0powKzmOd2NdpZ7132Eltwk-24JTpJQW58yU3MvqSO18SChl9RZL-I_-aH2Cu9wzG6O8GnfTaYNTSGoc6yNaaA_Q3CU-FeA
CODEN TCSCDI
CitedBy_id crossref_primary_10_1007_s10878_022_00978_4
crossref_primary_10_1016_j_dam_2025_05_033
crossref_primary_10_1007_s11425_014_4900_5
crossref_primary_10_1007_s10898_022_01183_7
crossref_primary_10_1007_s12190_009_0290_1
crossref_primary_10_26599_TST_2024_9010214
crossref_primary_10_1016_j_aml_2012_04_015
crossref_primary_10_1002_net_20369
crossref_primary_10_1111_itor_12009
Cites_doi 10.1109/SFCS.1992.267823
10.1145/227683.227684
10.1007/PL00011415
10.1007/BF02523688
10.1006/jagm.2001.1183
10.1137/0805002
10.1016/0166-218X(81)90001-9
ContentType Journal Article
Copyright 2007 Elsevier Ltd
2008 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: 2008 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.tcs.2007.05.036
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
Applied Sciences
EISSN 1879-2294
EndPage 87
ExternalDocumentID 19121733
10_1016_j_tcs_2007_05_036
S0304397507004732
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TAE
TN5
WH7
WUQ
XJT
YNT
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-40287ea061b7b963b8c46c5d4edb44d7a2ce75be1903828823027e5b7caf3e703
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000250417300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Mon Jul 21 09:15:31 EDT 2025
Tue Nov 18 20:00:22 EST 2025
Sat Nov 29 05:14:53 EST 2025
Fri Feb 23 02:16:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Randomized approximation algorithm
Maximum cut
Semidefinite programming
Limited unbalance cut
Polynomial
Computer theory
Methodology
Polynomial approximation
Node
Semi definite programming
Approximation algorithm
Weighted graph
Polynomial time
Maximum
Performance
Threshold
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-40287ea061b7b963b8c46c5d4edb44d7a2ce75be1903828823027e5b7caf3e703
OpenAccessLink https://dx.doi.org/10.1016/j.tcs.2007.05.036
PageCount 10
ParticipantIDs pascalfrancis_primary_19121733
crossref_citationtrail_10_1016_j_tcs_2007_05_036
crossref_primary_10_1016_j_tcs_2007_05_036
elsevier_sciencedirect_doi_10_1016_j_tcs_2007_05_036
PublicationCentury 2000
PublicationDate 2007-10-15
PublicationDateYYYYMMDD 2007-10-15
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Theoretical computer science
PublicationYear 2007
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ye (b12) 2001; 90
Frieze, Jerrum (b6) 1997; 18
G. Galbiati, S. Gualandi, F. Maffioli, Computational experince with a SDP-based algorithm for maximum cut with limited unbalance, in: Proc. of the 3rd International Network Optimization Conference, INOC 2007, 2007. File n. 24
Hayrapetyan, Kempe, Pal, Svitkina (b9) 2005; vol. 3669
Goemans, Williamson (b8) 1995; 42
S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and hardness of approximation problems, in: Proc. of the 33rd FOCS, 1992, pp. 14–23
Vazirani (b11) 2001
Ageev, Sviridenko (b1) 1999; vol. 1610
Akiyama, Avis, Chvatal, Era (b2) 1981; 3
Alizadeh (b3) 1995; 5
Feige, Langberg (b5) 2001; 41
Poljak, Tuza (b10) 1995; vol. 20
10.1016/j.tcs.2007.05.036_b4
10.1016/j.tcs.2007.05.036_b7
Alizadeh (10.1016/j.tcs.2007.05.036_b3) 1995; 5
Frieze (10.1016/j.tcs.2007.05.036_b6) 1997; 18
Hayrapetyan (10.1016/j.tcs.2007.05.036_b9) 2005; vol. 3669
Poljak (10.1016/j.tcs.2007.05.036_b10) 1995; vol. 20
Ye (10.1016/j.tcs.2007.05.036_b12) 2001; 90
Goemans (10.1016/j.tcs.2007.05.036_b8) 1995; 42
Vazirani (10.1016/j.tcs.2007.05.036_b11) 2001
Feige (10.1016/j.tcs.2007.05.036_b5) 2001; 41
Ageev (10.1016/j.tcs.2007.05.036_b1) 1999; vol. 1610
Akiyama (10.1016/j.tcs.2007.05.036_b2) 1981; 3
References_xml – volume: 18
  start-page: 67
  year: 1997
  end-page: 81
  ident: b6
  article-title: Improved approximation algorithms for MAX
  publication-title: Algorithmica
– reference: S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and hardness of approximation problems, in: Proc. of the 33rd FOCS, 1992, pp. 14–23
– volume: vol. 3669
  start-page: 191
  year: 2005
  end-page: 202
  ident: b9
  article-title: Unbalanced graph cuts
  publication-title: ESA 2005
– volume: vol. 1610
  start-page: 17
  year: 1999
  end-page: 30
  ident: b1
  article-title: Approximation algorithms for maximum coverage and max cut with given sizes of parts
  publication-title: IPCO 1999
– reference: G. Galbiati, S. Gualandi, F. Maffioli, Computational experince with a SDP-based algorithm for maximum cut with limited unbalance, in: Proc. of the 3rd International Network Optimization Conference, INOC 2007, 2007. File n. 24
– volume: 42
  start-page: 1115
  year: 1995
  end-page: 1145
  ident: b8
  article-title: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
  publication-title: J. ACM
– volume: 3
  start-page: 227
  year: 1981
  end-page: 233
  ident: b2
  article-title: Balancing signed graphs
  publication-title: Discrete Appl. Math.
– year: 2001
  ident: b11
  article-title: Approximation Algorithms
– volume: 90
  start-page: 101
  year: 2001
  end-page: 111
  ident: b12
  article-title: A. 699-approximation algorithm for max-bisection
  publication-title: Math. Program. Ser. A
– volume: 5
  start-page: 13
  year: 1995
  end-page: 51
  ident: b3
  article-title: Interior point methods in semidefinite programming with applications to combinatorial optimization
  publication-title: SIAM J. Optim.
– volume: 41
  start-page: 174
  year: 2001
  end-page: 211
  ident: b5
  article-title: Approximation algorithms for maximization problems in graph partitioning
  publication-title: J. Algorithms
– volume: vol. 20
  start-page: 181
  year: 1995
  end-page: 244
  ident: b10
  article-title: Maximum cuts and large bipartite subgraphs
  publication-title: Combinatorial Optimization
– ident: 10.1016/j.tcs.2007.05.036_b4
  doi: 10.1109/SFCS.1992.267823
– volume: 42
  start-page: 1115
  year: 1995
  ident: 10.1016/j.tcs.2007.05.036_b8
  article-title: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
  publication-title: J. ACM
  doi: 10.1145/227683.227684
– volume: vol. 20
  start-page: 181
  year: 1995
  ident: 10.1016/j.tcs.2007.05.036_b10
  article-title: Maximum cuts and large bipartite subgraphs
– ident: 10.1016/j.tcs.2007.05.036_b7
– volume: 90
  start-page: 101
  year: 2001
  ident: 10.1016/j.tcs.2007.05.036_b12
  article-title: A. 699-approximation algorithm for max-bisection
  publication-title: Math. Program. Ser. A
  doi: 10.1007/PL00011415
– volume: 18
  start-page: 67
  year: 1997
  ident: 10.1016/j.tcs.2007.05.036_b6
  article-title: Improved approximation algorithms for MAX k-CUT and MAX BISECTION
  publication-title: Algorithmica
  doi: 10.1007/BF02523688
– volume: vol. 3669
  start-page: 191
  year: 2005
  ident: 10.1016/j.tcs.2007.05.036_b9
  article-title: Unbalanced graph cuts
– volume: 41
  start-page: 174
  year: 2001
  ident: 10.1016/j.tcs.2007.05.036_b5
  article-title: Approximation algorithms for maximization problems in graph partitioning
  publication-title: J. Algorithms
  doi: 10.1006/jagm.2001.1183
– year: 2001
  ident: 10.1016/j.tcs.2007.05.036_b11
– volume: 5
  start-page: 13
  year: 1995
  ident: 10.1016/j.tcs.2007.05.036_b3
  article-title: Interior point methods in semidefinite programming with applications to combinatorial optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/0805002
– volume: vol. 1610
  start-page: 17
  year: 1999
  ident: 10.1016/j.tcs.2007.05.036_b1
  article-title: Approximation algorithms for maximum coverage and max cut with given sizes of parts
– volume: 3
  start-page: 227
  year: 1981
  ident: 10.1016/j.tcs.2007.05.036_b2
  article-title: Balancing signed graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(81)90001-9
SSID ssj0000576
Score 1.8915278
Snippet We consider the problem of partitioning the vertices of a weighted graph into two sets of sizes that differ at most by a given threshold B , so as to maximize...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 78
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Approximations and expansions
Computer science; control theory; systems
Exact sciences and technology
Information retrieval. Graph
Limited unbalance cut
Mathematical analysis
Mathematics
Maximum cut
Miscellaneous
Randomized approximation algorithm
Sciences and techniques of general use
Semidefinite programming
Theoretical computing
Title Approximation algorithms for maximum cut with limited unbalance
URI https://dx.doi.org/10.1016/j.tcs.2007.05.036
Volume 385
WOSCitedRecordID wos000250417300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywGEeBRQy6PygRNRqmxsr-MTWqEiQGrFYZH2FtmOA6nS7KpJ0P78jmMnuym0ogcuUZRNnGy-LzN-zMyH0Hui7YohfEiRimhIdUJDEVEVZjHTIufgNJjsxCb42VmyXIrvXhW17uQEeFUlm41Y_1eo4RiAbVNn7wD30CgcgH0AHbYAO2z_Cfi5rRK-KVxKYiDLnysY__9ydReCCwm_tBeBbhs3BVu6BKegrZQNctSjyKDFTpaj9vIPgfeZQ-COLJWFt5tgL9qyGOz8qczzYuXSrzv9DlPr1WiWgVvz7PIs--wqu4IinMpJbzlJwnYpEpIdS-iEeUY-9Q9r7SYOzo8bXftikuw4In-pjH3NYw1xhH2I2nkKTVhFTZ5GLIUm7qO9mDORTNDe_OvJ8tvWOTPulq_93-kXuruQv2vPcVNX5fFa1vDic6d8stMdWTxDT_w4As8d_s_RPVPto6e9Rgf2JnsfPTod6vLWL9DHETnwlhwYyIE9OTCQA1tyYE8OPJDjJfrx-WTx6UvoJTRCTWLe2NmBhBsJnTbFFdhalWg60yyjJlOUZlzG2nCmDHQLCYy97aprzA1TXMucGPAGr9CkWlXmAGEuBZ0ZIrJ8FtEp5Qmgrxj4AK2U5FN5iKL-baXa15e3MidleiNKh-jDcMnaFVe57WTaQ5B6prteXwp0uu2yoxFc2xuJKQzHCXl9l4d4gx5uv463aNJctuYdeqB_N0V9eeTJdgXoQpCH
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+algorithms+for+maximum+cut+with+limited+unbalance&rft.jtitle=Theoretical+computer+science&rft.au=Galbiati%2C+Giulia&rft.au=Maffioli%2C+Francesco&rft.date=2007-10-15&rft.issn=0304-3975&rft.volume=385&rft.issue=1-3&rft.spage=78&rft.epage=87&rft_id=info:doi/10.1016%2Fj.tcs.2007.05.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2007_05_036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon