Solving linear optimization problems with max-star composition equation constraints

In this paper an optimization model with a linear objective function subject to a system of fuzzy relation composition equations is presented. Since the non-empty feasible solution set of the fuzzy relation equations is generally a non-convex set, the conventional linear programming method will not...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 179; číslo 2; s. 654 - 661
Hlavní autoři: Khorram, Esmaile, Ghodousian, Amin, Molai, Ali Abbasi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 15.08.2006
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper an optimization model with a linear objective function subject to a system of fuzzy relation composition equations is presented. Since the non-empty feasible solution set of the fuzzy relation equations is generally a non-convex set, the conventional linear programming method will not be suitable for solving such a problem. Therefore, an efficient solution procedure for such problems appears to be necessary. In this paper, firstly, we characterize the feasible solution set, and then introduce two efficient procedures for solving the problem. Finally, two concrete examples are included for more details.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2005.12.006