Systolic computation of the matrix exponential and other matrix functions
This paper discusses the systolic implementation of the computation of the exponential of a matrix by means of techniques involving "scaling and squaring" as applied to the Taylor series approximation. Further, it is shown that a number of other matrix functions, such as A -1 A 1/2 A -1/2...
Uloženo v:
| Vydáno v: | International journal of computer mathematics Ročník 25; číslo 3-4; s. 345 - 358 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Gordon and Breach Science Publishers
01.01.1988
Taylor and Francis |
| Témata: | |
| ISSN: | 0020-7160, 1029-0265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper discusses the systolic implementation of the computation of the exponential of a matrix by means of techniques involving "scaling and squaring" as applied to the Taylor series approximation. Further, it is shown that a number of other matrix functions, such as A
-1
A
1/2
A
-1/2
cos(A), sin(A), log(A), can be computed systolically using similar techniques. |
|---|---|
| ISSN: | 0020-7160 1029-0265 |
| DOI: | 10.1080/00207168808803677 |