Four-dimensional matrix transformation and rate of A -statistical convergence of periodic functions

In this paper, using the concept of A -statistical convergence for double real sequences, we obtain a Korovkin type-approximation theorem for double sequences of positive linear operators defined on the space of all 2 π -periodic and real valued continuous functions on the real two-dimensional space...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical and computer modelling Ročník 52; číslo 9; s. 1858 - 1866
Hlavní autoři: Demirci, Kamil, Dirik, Fadime
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.11.2010
Elsevier
Témata:
ISSN:0895-7177, 1872-9479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, using the concept of A -statistical convergence for double real sequences, we obtain a Korovkin type-approximation theorem for double sequences of positive linear operators defined on the space of all 2 π -periodic and real valued continuous functions on the real two-dimensional space. Furthermore, we display an application which shows that our new result is stronger than its classical version. Also, we study rates of A -statistical convergence of a double sequence of positive linear operators acting on this space. Finally, displaying an example, it is shown that our statistical rates are more efficient than the classical aspects in the approximation theory.
ISSN:0895-7177
1872-9479
DOI:10.1016/j.mcm.2010.07.015